Hybrid online–offline learning to rank using simulated annealing strategy based on dependent click model

Learning to rank (LTR) is the process of constructing a model for ranking documents or objects. It is useful for many applications such as Information retrieval (IR) and recommendation systems. This paper introduces a comparison between Offline and Online (LTR) for IR. It also proposes a novel Offli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge and information systems 2022-10, Vol.64 (10), p.2833-2847
Hauptverfasser: Ibrahim, Osman Ali Sadek, Younis, Eman M. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2847
container_issue 10
container_start_page 2833
container_title Knowledge and information systems
container_volume 64
creator Ibrahim, Osman Ali Sadek
Younis, Eman M. G.
description Learning to rank (LTR) is the process of constructing a model for ranking documents or objects. It is useful for many applications such as Information retrieval (IR) and recommendation systems. This paper introduces a comparison between Offline and Online (LTR) for IR. It also proposes a novel Offline (1 + 1)-Simulated Annealing Strategy (SAS-Rank) and introduces the first Hybrid Online–Offline LTR techniques using SAS-Rank and ES-Rank with Online Dependent Click Model (DCM). SAS-Rank is a combination of Simulated Annealing method and Evolutionary Strategy. From the obtained experimental results, we can conclude that the Offline LTR techniques outperformed the well-known Online Dependent Click Model (DCM) technique. Moreover, the Hybrid Online–Offline SAS-Click outperformed the predictive ranking results on unseen data in most evaluation fitness metrics using LETOR 4 dataset compared to other approaches. On the other hand, Hybrid ES-Click is a competitive approach with SAS-Click in evolving ranking models for training and validation data. Regarding Offline LTR, the SAS-Rank outperformed the well-known ES-Rank which has been compared in previous studies with fourteen machine learning techniques. This research uses the best available Linear LTR approaches existing in the literature which are offline ES-Rank with Online DCM. The linear LTR approach output is a linear ranking model which can be represented as a vector of feature importance weights. This paper demonstrated the results and findings obtained using the LETOR 4 dataset, and Java Archive Package is provided for facilitating reproducible research.
doi_str_mv 10.1007/s10115-022-01726-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2712654735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2712654735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-b03b09e3c28580b8fc7ed9fd026cd7e13c28ad887e189c890b606411db816aaf3</originalsourceid><addsrcrecordid>eNp9UEFOwzAQtBBIlMIHOFniHNh1Gts5ogooUiUucLYc26nSpk6xk0Nv_IEf8hKcthI3Tjs7OzMrDSG3CPcIIB4iAmKRAWMZoGA8gzMyAYZlliPy8xPGXIhLchXjGpKKI07IerGvQmNp59vGu5-v766uR0Rbp4Nv_Ir2HQ3ab-gQxy0226HVvbNUe-90e-D6kJjVnlY6ujGKWrdz3jrfU9M2ZkO3nXXtNbmodRvdzWlOycfz0_t8kS3fXl7nj8vMsFnZZxXkFZQuN0wWEipZG-FsWVtg3FjhcDxoK2WCsjSyhIoDnyHaSiLXus6n5O6Yuwvd5-Bir9bdEHx6qZhAxouZyIukYkeVCV2MwdVqF5qtDnuFoMZO1bFTlTpVh04VJFN-NMUk9isX_qL_cf0CFKl7-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2712654735</pqid></control><display><type>article</type><title>Hybrid online–offline learning to rank using simulated annealing strategy based on dependent click model</title><source>Springer Nature - Complete Springer Journals</source><creator>Ibrahim, Osman Ali Sadek ; Younis, Eman M. G.</creator><creatorcontrib>Ibrahim, Osman Ali Sadek ; Younis, Eman M. G.</creatorcontrib><description>Learning to rank (LTR) is the process of constructing a model for ranking documents or objects. It is useful for many applications such as Information retrieval (IR) and recommendation systems. This paper introduces a comparison between Offline and Online (LTR) for IR. It also proposes a novel Offline (1 + 1)-Simulated Annealing Strategy (SAS-Rank) and introduces the first Hybrid Online–Offline LTR techniques using SAS-Rank and ES-Rank with Online Dependent Click Model (DCM). SAS-Rank is a combination of Simulated Annealing method and Evolutionary Strategy. From the obtained experimental results, we can conclude that the Offline LTR techniques outperformed the well-known Online Dependent Click Model (DCM) technique. Moreover, the Hybrid Online–Offline SAS-Click outperformed the predictive ranking results on unseen data in most evaluation fitness metrics using LETOR 4 dataset compared to other approaches. On the other hand, Hybrid ES-Click is a competitive approach with SAS-Click in evolving ranking models for training and validation data. Regarding Offline LTR, the SAS-Rank outperformed the well-known ES-Rank which has been compared in previous studies with fourteen machine learning techniques. This research uses the best available Linear LTR approaches existing in the literature which are offline ES-Rank with Online DCM. The linear LTR approach output is a linear ranking model which can be represented as a vector of feature importance weights. This paper demonstrated the results and findings obtained using the LETOR 4 dataset, and Java Archive Package is provided for facilitating reproducible research.</description><identifier>ISSN: 0219-1377</identifier><identifier>EISSN: 0219-3116</identifier><identifier>DOI: 10.1007/s10115-022-01726-0</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Computer Science ; Data Mining and Knowledge Discovery ; Database Management ; Datasets ; Information retrieval ; Information Storage and Retrieval ; Information Systems and Communication Service ; Information Systems Applications (incl.Internet) ; IT in Business ; Machine learning ; Object recognition ; Ranking ; Recommender systems ; Regular Paper ; Simulated annealing ; Simulation ; Strategy</subject><ispartof>Knowledge and information systems, 2022-10, Vol.64 (10), p.2833-2847</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-b03b09e3c28580b8fc7ed9fd026cd7e13c28ad887e189c890b606411db816aaf3</citedby><cites>FETCH-LOGICAL-c249t-b03b09e3c28580b8fc7ed9fd026cd7e13c28ad887e189c890b606411db816aaf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10115-022-01726-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10115-022-01726-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Ibrahim, Osman Ali Sadek</creatorcontrib><creatorcontrib>Younis, Eman M. G.</creatorcontrib><title>Hybrid online–offline learning to rank using simulated annealing strategy based on dependent click model</title><title>Knowledge and information systems</title><addtitle>Knowl Inf Syst</addtitle><description>Learning to rank (LTR) is the process of constructing a model for ranking documents or objects. It is useful for many applications such as Information retrieval (IR) and recommendation systems. This paper introduces a comparison between Offline and Online (LTR) for IR. It also proposes a novel Offline (1 + 1)-Simulated Annealing Strategy (SAS-Rank) and introduces the first Hybrid Online–Offline LTR techniques using SAS-Rank and ES-Rank with Online Dependent Click Model (DCM). SAS-Rank is a combination of Simulated Annealing method and Evolutionary Strategy. From the obtained experimental results, we can conclude that the Offline LTR techniques outperformed the well-known Online Dependent Click Model (DCM) technique. Moreover, the Hybrid Online–Offline SAS-Click outperformed the predictive ranking results on unseen data in most evaluation fitness metrics using LETOR 4 dataset compared to other approaches. On the other hand, Hybrid ES-Click is a competitive approach with SAS-Click in evolving ranking models for training and validation data. Regarding Offline LTR, the SAS-Rank outperformed the well-known ES-Rank which has been compared in previous studies with fourteen machine learning techniques. This research uses the best available Linear LTR approaches existing in the literature which are offline ES-Rank with Online DCM. The linear LTR approach output is a linear ranking model which can be represented as a vector of feature importance weights. This paper demonstrated the results and findings obtained using the LETOR 4 dataset, and Java Archive Package is provided for facilitating reproducible research.</description><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Database Management</subject><subject>Datasets</subject><subject>Information retrieval</subject><subject>Information Storage and Retrieval</subject><subject>Information Systems and Communication Service</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>IT in Business</subject><subject>Machine learning</subject><subject>Object recognition</subject><subject>Ranking</subject><subject>Recommender systems</subject><subject>Regular Paper</subject><subject>Simulated annealing</subject><subject>Simulation</subject><subject>Strategy</subject><issn>0219-1377</issn><issn>0219-3116</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UEFOwzAQtBBIlMIHOFniHNh1Gts5ogooUiUucLYc26nSpk6xk0Nv_IEf8hKcthI3Tjs7OzMrDSG3CPcIIB4iAmKRAWMZoGA8gzMyAYZlliPy8xPGXIhLchXjGpKKI07IerGvQmNp59vGu5-v766uR0Rbp4Nv_Ir2HQ3ab-gQxy0226HVvbNUe-90e-D6kJjVnlY6ujGKWrdz3jrfU9M2ZkO3nXXtNbmodRvdzWlOycfz0_t8kS3fXl7nj8vMsFnZZxXkFZQuN0wWEipZG-FsWVtg3FjhcDxoK2WCsjSyhIoDnyHaSiLXus6n5O6Yuwvd5-Bir9bdEHx6qZhAxouZyIukYkeVCV2MwdVqF5qtDnuFoMZO1bFTlTpVh04VJFN-NMUk9isX_qL_cf0CFKl7-A</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Ibrahim, Osman Ali Sadek</creator><creator>Younis, Eman M. G.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20221001</creationdate><title>Hybrid online–offline learning to rank using simulated annealing strategy based on dependent click model</title><author>Ibrahim, Osman Ali Sadek ; Younis, Eman M. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-b03b09e3c28580b8fc7ed9fd026cd7e13c28ad887e189c890b606411db816aaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Database Management</topic><topic>Datasets</topic><topic>Information retrieval</topic><topic>Information Storage and Retrieval</topic><topic>Information Systems and Communication Service</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>IT in Business</topic><topic>Machine learning</topic><topic>Object recognition</topic><topic>Ranking</topic><topic>Recommender systems</topic><topic>Regular Paper</topic><topic>Simulated annealing</topic><topic>Simulation</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ibrahim, Osman Ali Sadek</creatorcontrib><creatorcontrib>Younis, Eman M. G.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Knowledge and information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ibrahim, Osman Ali Sadek</au><au>Younis, Eman M. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid online–offline learning to rank using simulated annealing strategy based on dependent click model</atitle><jtitle>Knowledge and information systems</jtitle><stitle>Knowl Inf Syst</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>64</volume><issue>10</issue><spage>2833</spage><epage>2847</epage><pages>2833-2847</pages><issn>0219-1377</issn><eissn>0219-3116</eissn><abstract>Learning to rank (LTR) is the process of constructing a model for ranking documents or objects. It is useful for many applications such as Information retrieval (IR) and recommendation systems. This paper introduces a comparison between Offline and Online (LTR) for IR. It also proposes a novel Offline (1 + 1)-Simulated Annealing Strategy (SAS-Rank) and introduces the first Hybrid Online–Offline LTR techniques using SAS-Rank and ES-Rank with Online Dependent Click Model (DCM). SAS-Rank is a combination of Simulated Annealing method and Evolutionary Strategy. From the obtained experimental results, we can conclude that the Offline LTR techniques outperformed the well-known Online Dependent Click Model (DCM) technique. Moreover, the Hybrid Online–Offline SAS-Click outperformed the predictive ranking results on unseen data in most evaluation fitness metrics using LETOR 4 dataset compared to other approaches. On the other hand, Hybrid ES-Click is a competitive approach with SAS-Click in evolving ranking models for training and validation data. Regarding Offline LTR, the SAS-Rank outperformed the well-known ES-Rank which has been compared in previous studies with fourteen machine learning techniques. This research uses the best available Linear LTR approaches existing in the literature which are offline ES-Rank with Online DCM. The linear LTR approach output is a linear ranking model which can be represented as a vector of feature importance weights. This paper demonstrated the results and findings obtained using the LETOR 4 dataset, and Java Archive Package is provided for facilitating reproducible research.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s10115-022-01726-0</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0219-1377
ispartof Knowledge and information systems, 2022-10, Vol.64 (10), p.2833-2847
issn 0219-1377
0219-3116
language eng
recordid cdi_proquest_journals_2712654735
source Springer Nature - Complete Springer Journals
subjects Computer Science
Data Mining and Knowledge Discovery
Database Management
Datasets
Information retrieval
Information Storage and Retrieval
Information Systems and Communication Service
Information Systems Applications (incl.Internet)
IT in Business
Machine learning
Object recognition
Ranking
Recommender systems
Regular Paper
Simulated annealing
Simulation
Strategy
title Hybrid online–offline learning to rank using simulated annealing strategy based on dependent click model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A54%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20online%E2%80%93offline%20learning%20to%20rank%20using%20simulated%20annealing%20strategy%20based%20on%20dependent%20click%20model&rft.jtitle=Knowledge%20and%20information%20systems&rft.au=Ibrahim,%20Osman%20Ali%20Sadek&rft.date=2022-10-01&rft.volume=64&rft.issue=10&rft.spage=2833&rft.epage=2847&rft.pages=2833-2847&rft.issn=0219-1377&rft.eissn=0219-3116&rft_id=info:doi/10.1007/s10115-022-01726-0&rft_dat=%3Cproquest_cross%3E2712654735%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2712654735&rft_id=info:pmid/&rfr_iscdi=true