Content‐based image retrieval for super‐resolutioned images using feature fusion: Deep learning and hand crafted

An innovative image retrieval agenda by concatenating deep learning features from GoogleNet and low‐level features from HSI and RGB color space is proposed in this article. Most of the CNN features suffer from loss of information due to image resize as a pre‐processing stage. To reduce this informat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Concurrency and computation 2022-10, Vol.34 (22), p.n/a
Hauptverfasser: Pathak, Debanjan, Raju, Undi Surya Narayana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 22
container_start_page
container_title Concurrency and computation
container_volume 34
creator Pathak, Debanjan
Raju, Undi Surya Narayana
description An innovative image retrieval agenda by concatenating deep learning features from GoogleNet and low‐level features from HSI and RGB color space is proposed in this article. Most of the CNN features suffer from loss of information due to image resize as a pre‐processing stage. To reduce this information loss super‐resolution technic is used for resizing images. An improved form of dot‐diffused block truncation coding is used for extracting RGB handcraft features. To discover the interdependencies between color and intensity component of an image, interchannel voting between hue, saturation, and intensity component is calculated as a color feature in HSI space. Histogram of orientated gradient (HOG) feature is used as shape feature. Five standard performance parameters, average precision rate, average recall rate, F‐Measure, Average Normalized Modified Retrieval Rank, and Total Minimum Retrieval Epoch, are applied on nine image datasets: Corel‐1K, Corel‐5K, Corel‐10K, VisTex, STex, ColorBrodatz and three subsets of ImageNet dataset for evaluation process of proposed method. For all dataset the best performance is achieved by the proposed method with respect to all performance parameters.
doi_str_mv 10.1002/cpe.6851
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2712645393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2712645393</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2931-5eb1e5b1a831eb4182643eae6283f3d2e9c88833c77f8df69a636223bac95c7c3</originalsourceid><addsrcrecordid>eNp10M1KxDAQB_AgCq6r4CMEvHjpmo9tm3qTun7Agh70HNJ0snapaU1SZW8-gs_ok5i66s1LJiE_Zpg_QseUzCgh7Ez3MMtESnfQhKacJSTj892_O8v20YH3a0IoJZxOUCg7G8CGz_ePSnmocfOsVoAdBNfAq2qx6Rz2Qw8uCge-a4fQdPYXejz4xq6wARUGB9jEZ2fP8SVAj1tQzo6_ytb4aTy0UyZAfYj2jGo9HP3UKXq8WjyUN8ny7vq2vFgmmhWcJilUFNKKKsEpVHMqWDbnoCBjghteMyi0EIJznedG1CYrVMYzxnildJHqXPMpOtn27V33MoAPct0NzsaRkuU0dkt5waM63SrtOu8dGNm7uJzbSErkmKmMmcox00iTLX1rWtj862R5v_j2X3D2exs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2712645393</pqid></control><display><type>article</type><title>Content‐based image retrieval for super‐resolutioned images using feature fusion: Deep learning and hand crafted</title><source>Access via Wiley Online Library</source><creator>Pathak, Debanjan ; Raju, Undi Surya Narayana</creator><creatorcontrib>Pathak, Debanjan ; Raju, Undi Surya Narayana</creatorcontrib><description>An innovative image retrieval agenda by concatenating deep learning features from GoogleNet and low‐level features from HSI and RGB color space is proposed in this article. Most of the CNN features suffer from loss of information due to image resize as a pre‐processing stage. To reduce this information loss super‐resolution technic is used for resizing images. An improved form of dot‐diffused block truncation coding is used for extracting RGB handcraft features. To discover the interdependencies between color and intensity component of an image, interchannel voting between hue, saturation, and intensity component is calculated as a color feature in HSI space. Histogram of orientated gradient (HOG) feature is used as shape feature. Five standard performance parameters, average precision rate, average recall rate, F‐Measure, Average Normalized Modified Retrieval Rank, and Total Minimum Retrieval Epoch, are applied on nine image datasets: Corel‐1K, Corel‐5K, Corel‐10K, VisTex, STex, ColorBrodatz and three subsets of ImageNet dataset for evaluation process of proposed method. For all dataset the best performance is achieved by the proposed method with respect to all performance parameters.</description><identifier>ISSN: 1532-0626</identifier><identifier>EISSN: 1532-0634</identifier><identifier>DOI: 10.1002/cpe.6851</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>CBIR ; Color ; Datasets ; Deep learning ; Diffusion barriers ; Feature extraction ; feature fusion ; Histograms ; HOG ; Image retrieval ; interchannel voting ; Parameter modification ; Saturation (color) ; super‐resolution</subject><ispartof>Concurrency and computation, 2022-10, Vol.34 (22), p.n/a</ispartof><rights>2022 John Wiley &amp; Sons Ltd.</rights><rights>2022 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2931-5eb1e5b1a831eb4182643eae6283f3d2e9c88833c77f8df69a636223bac95c7c3</citedby><cites>FETCH-LOGICAL-c2931-5eb1e5b1a831eb4182643eae6283f3d2e9c88833c77f8df69a636223bac95c7c3</cites><orcidid>0000-0003-1049-7949</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpe.6851$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpe.6851$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Pathak, Debanjan</creatorcontrib><creatorcontrib>Raju, Undi Surya Narayana</creatorcontrib><title>Content‐based image retrieval for super‐resolutioned images using feature fusion: Deep learning and hand crafted</title><title>Concurrency and computation</title><description>An innovative image retrieval agenda by concatenating deep learning features from GoogleNet and low‐level features from HSI and RGB color space is proposed in this article. Most of the CNN features suffer from loss of information due to image resize as a pre‐processing stage. To reduce this information loss super‐resolution technic is used for resizing images. An improved form of dot‐diffused block truncation coding is used for extracting RGB handcraft features. To discover the interdependencies between color and intensity component of an image, interchannel voting between hue, saturation, and intensity component is calculated as a color feature in HSI space. Histogram of orientated gradient (HOG) feature is used as shape feature. Five standard performance parameters, average precision rate, average recall rate, F‐Measure, Average Normalized Modified Retrieval Rank, and Total Minimum Retrieval Epoch, are applied on nine image datasets: Corel‐1K, Corel‐5K, Corel‐10K, VisTex, STex, ColorBrodatz and three subsets of ImageNet dataset for evaluation process of proposed method. For all dataset the best performance is achieved by the proposed method with respect to all performance parameters.</description><subject>CBIR</subject><subject>Color</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Diffusion barriers</subject><subject>Feature extraction</subject><subject>feature fusion</subject><subject>Histograms</subject><subject>HOG</subject><subject>Image retrieval</subject><subject>interchannel voting</subject><subject>Parameter modification</subject><subject>Saturation (color)</subject><subject>super‐resolution</subject><issn>1532-0626</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp10M1KxDAQB_AgCq6r4CMEvHjpmo9tm3qTun7Agh70HNJ0snapaU1SZW8-gs_ok5i66s1LJiE_Zpg_QseUzCgh7Ez3MMtESnfQhKacJSTj892_O8v20YH3a0IoJZxOUCg7G8CGz_ePSnmocfOsVoAdBNfAq2qx6Rz2Qw8uCge-a4fQdPYXejz4xq6wARUGB9jEZ2fP8SVAj1tQzo6_ytb4aTy0UyZAfYj2jGo9HP3UKXq8WjyUN8ny7vq2vFgmmhWcJilUFNKKKsEpVHMqWDbnoCBjghteMyi0EIJznedG1CYrVMYzxnildJHqXPMpOtn27V33MoAPct0NzsaRkuU0dkt5waM63SrtOu8dGNm7uJzbSErkmKmMmcox00iTLX1rWtj862R5v_j2X3D2exs</recordid><startdate>20221010</startdate><enddate>20221010</enddate><creator>Pathak, Debanjan</creator><creator>Raju, Undi Surya Narayana</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1049-7949</orcidid></search><sort><creationdate>20221010</creationdate><title>Content‐based image retrieval for super‐resolutioned images using feature fusion: Deep learning and hand crafted</title><author>Pathak, Debanjan ; Raju, Undi Surya Narayana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2931-5eb1e5b1a831eb4182643eae6283f3d2e9c88833c77f8df69a636223bac95c7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CBIR</topic><topic>Color</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Diffusion barriers</topic><topic>Feature extraction</topic><topic>feature fusion</topic><topic>Histograms</topic><topic>HOG</topic><topic>Image retrieval</topic><topic>interchannel voting</topic><topic>Parameter modification</topic><topic>Saturation (color)</topic><topic>super‐resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pathak, Debanjan</creatorcontrib><creatorcontrib>Raju, Undi Surya Narayana</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Concurrency and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pathak, Debanjan</au><au>Raju, Undi Surya Narayana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Content‐based image retrieval for super‐resolutioned images using feature fusion: Deep learning and hand crafted</atitle><jtitle>Concurrency and computation</jtitle><date>2022-10-10</date><risdate>2022</risdate><volume>34</volume><issue>22</issue><epage>n/a</epage><issn>1532-0626</issn><eissn>1532-0634</eissn><abstract>An innovative image retrieval agenda by concatenating deep learning features from GoogleNet and low‐level features from HSI and RGB color space is proposed in this article. Most of the CNN features suffer from loss of information due to image resize as a pre‐processing stage. To reduce this information loss super‐resolution technic is used for resizing images. An improved form of dot‐diffused block truncation coding is used for extracting RGB handcraft features. To discover the interdependencies between color and intensity component of an image, interchannel voting between hue, saturation, and intensity component is calculated as a color feature in HSI space. Histogram of orientated gradient (HOG) feature is used as shape feature. Five standard performance parameters, average precision rate, average recall rate, F‐Measure, Average Normalized Modified Retrieval Rank, and Total Minimum Retrieval Epoch, are applied on nine image datasets: Corel‐1K, Corel‐5K, Corel‐10K, VisTex, STex, ColorBrodatz and three subsets of ImageNet dataset for evaluation process of proposed method. For all dataset the best performance is achieved by the proposed method with respect to all performance parameters.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/cpe.6851</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0003-1049-7949</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1532-0626
ispartof Concurrency and computation, 2022-10, Vol.34 (22), p.n/a
issn 1532-0626
1532-0634
language eng
recordid cdi_proquest_journals_2712645393
source Access via Wiley Online Library
subjects CBIR
Color
Datasets
Deep learning
Diffusion barriers
Feature extraction
feature fusion
Histograms
HOG
Image retrieval
interchannel voting
Parameter modification
Saturation (color)
super‐resolution
title Content‐based image retrieval for super‐resolutioned images using feature fusion: Deep learning and hand crafted
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A15%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Content%E2%80%90based%20image%20retrieval%20for%20super%E2%80%90resolutioned%20images%20using%20feature%20fusion:%20Deep%20learning%20and%20hand%20crafted&rft.jtitle=Concurrency%20and%20computation&rft.au=Pathak,%20Debanjan&rft.date=2022-10-10&rft.volume=34&rft.issue=22&rft.epage=n/a&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002/cpe.6851&rft_dat=%3Cproquest_cross%3E2712645393%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2712645393&rft_id=info:pmid/&rfr_iscdi=true