Content‐based image retrieval for super‐resolutioned images using feature fusion: Deep learning and hand crafted
An innovative image retrieval agenda by concatenating deep learning features from GoogleNet and low‐level features from HSI and RGB color space is proposed in this article. Most of the CNN features suffer from loss of information due to image resize as a pre‐processing stage. To reduce this informat...
Gespeichert in:
Veröffentlicht in: | Concurrency and computation 2022-10, Vol.34 (22), p.n/a |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 22 |
container_start_page | |
container_title | Concurrency and computation |
container_volume | 34 |
creator | Pathak, Debanjan Raju, Undi Surya Narayana |
description | An innovative image retrieval agenda by concatenating deep learning features from GoogleNet and low‐level features from HSI and RGB color space is proposed in this article. Most of the CNN features suffer from loss of information due to image resize as a pre‐processing stage. To reduce this information loss super‐resolution technic is used for resizing images. An improved form of dot‐diffused block truncation coding is used for extracting RGB handcraft features. To discover the interdependencies between color and intensity component of an image, interchannel voting between hue, saturation, and intensity component is calculated as a color feature in HSI space. Histogram of orientated gradient (HOG) feature is used as shape feature. Five standard performance parameters, average precision rate, average recall rate, F‐Measure, Average Normalized Modified Retrieval Rank, and Total Minimum Retrieval Epoch, are applied on nine image datasets: Corel‐1K, Corel‐5K, Corel‐10K, VisTex, STex, ColorBrodatz and three subsets of ImageNet dataset for evaluation process of proposed method. For all dataset the best performance is achieved by the proposed method with respect to all performance parameters. |
doi_str_mv | 10.1002/cpe.6851 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2712645393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2712645393</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2931-5eb1e5b1a831eb4182643eae6283f3d2e9c88833c77f8df69a636223bac95c7c3</originalsourceid><addsrcrecordid>eNp10M1KxDAQB_AgCq6r4CMEvHjpmo9tm3qTun7Agh70HNJ0snapaU1SZW8-gs_ok5i66s1LJiE_Zpg_QseUzCgh7Ez3MMtESnfQhKacJSTj892_O8v20YH3a0IoJZxOUCg7G8CGz_ePSnmocfOsVoAdBNfAq2qx6Rz2Qw8uCge-a4fQdPYXejz4xq6wARUGB9jEZ2fP8SVAj1tQzo6_ytb4aTy0UyZAfYj2jGo9HP3UKXq8WjyUN8ny7vq2vFgmmhWcJilUFNKKKsEpVHMqWDbnoCBjghteMyi0EIJznedG1CYrVMYzxnildJHqXPMpOtn27V33MoAPct0NzsaRkuU0dkt5waM63SrtOu8dGNm7uJzbSErkmKmMmcox00iTLX1rWtj862R5v_j2X3D2exs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2712645393</pqid></control><display><type>article</type><title>Content‐based image retrieval for super‐resolutioned images using feature fusion: Deep learning and hand crafted</title><source>Access via Wiley Online Library</source><creator>Pathak, Debanjan ; Raju, Undi Surya Narayana</creator><creatorcontrib>Pathak, Debanjan ; Raju, Undi Surya Narayana</creatorcontrib><description>An innovative image retrieval agenda by concatenating deep learning features from GoogleNet and low‐level features from HSI and RGB color space is proposed in this article. Most of the CNN features suffer from loss of information due to image resize as a pre‐processing stage. To reduce this information loss super‐resolution technic is used for resizing images. An improved form of dot‐diffused block truncation coding is used for extracting RGB handcraft features. To discover the interdependencies between color and intensity component of an image, interchannel voting between hue, saturation, and intensity component is calculated as a color feature in HSI space. Histogram of orientated gradient (HOG) feature is used as shape feature. Five standard performance parameters, average precision rate, average recall rate, F‐Measure, Average Normalized Modified Retrieval Rank, and Total Minimum Retrieval Epoch, are applied on nine image datasets: Corel‐1K, Corel‐5K, Corel‐10K, VisTex, STex, ColorBrodatz and three subsets of ImageNet dataset for evaluation process of proposed method. For all dataset the best performance is achieved by the proposed method with respect to all performance parameters.</description><identifier>ISSN: 1532-0626</identifier><identifier>EISSN: 1532-0634</identifier><identifier>DOI: 10.1002/cpe.6851</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>CBIR ; Color ; Datasets ; Deep learning ; Diffusion barriers ; Feature extraction ; feature fusion ; Histograms ; HOG ; Image retrieval ; interchannel voting ; Parameter modification ; Saturation (color) ; super‐resolution</subject><ispartof>Concurrency and computation, 2022-10, Vol.34 (22), p.n/a</ispartof><rights>2022 John Wiley & Sons Ltd.</rights><rights>2022 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2931-5eb1e5b1a831eb4182643eae6283f3d2e9c88833c77f8df69a636223bac95c7c3</citedby><cites>FETCH-LOGICAL-c2931-5eb1e5b1a831eb4182643eae6283f3d2e9c88833c77f8df69a636223bac95c7c3</cites><orcidid>0000-0003-1049-7949</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpe.6851$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpe.6851$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Pathak, Debanjan</creatorcontrib><creatorcontrib>Raju, Undi Surya Narayana</creatorcontrib><title>Content‐based image retrieval for super‐resolutioned images using feature fusion: Deep learning and hand crafted</title><title>Concurrency and computation</title><description>An innovative image retrieval agenda by concatenating deep learning features from GoogleNet and low‐level features from HSI and RGB color space is proposed in this article. Most of the CNN features suffer from loss of information due to image resize as a pre‐processing stage. To reduce this information loss super‐resolution technic is used for resizing images. An improved form of dot‐diffused block truncation coding is used for extracting RGB handcraft features. To discover the interdependencies between color and intensity component of an image, interchannel voting between hue, saturation, and intensity component is calculated as a color feature in HSI space. Histogram of orientated gradient (HOG) feature is used as shape feature. Five standard performance parameters, average precision rate, average recall rate, F‐Measure, Average Normalized Modified Retrieval Rank, and Total Minimum Retrieval Epoch, are applied on nine image datasets: Corel‐1K, Corel‐5K, Corel‐10K, VisTex, STex, ColorBrodatz and three subsets of ImageNet dataset for evaluation process of proposed method. For all dataset the best performance is achieved by the proposed method with respect to all performance parameters.</description><subject>CBIR</subject><subject>Color</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Diffusion barriers</subject><subject>Feature extraction</subject><subject>feature fusion</subject><subject>Histograms</subject><subject>HOG</subject><subject>Image retrieval</subject><subject>interchannel voting</subject><subject>Parameter modification</subject><subject>Saturation (color)</subject><subject>super‐resolution</subject><issn>1532-0626</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp10M1KxDAQB_AgCq6r4CMEvHjpmo9tm3qTun7Agh70HNJ0snapaU1SZW8-gs_ok5i66s1LJiE_Zpg_QseUzCgh7Ez3MMtESnfQhKacJSTj892_O8v20YH3a0IoJZxOUCg7G8CGz_ePSnmocfOsVoAdBNfAq2qx6Rz2Qw8uCge-a4fQdPYXejz4xq6wARUGB9jEZ2fP8SVAj1tQzo6_ytb4aTy0UyZAfYj2jGo9HP3UKXq8WjyUN8ny7vq2vFgmmhWcJilUFNKKKsEpVHMqWDbnoCBjghteMyi0EIJznedG1CYrVMYzxnildJHqXPMpOtn27V33MoAPct0NzsaRkuU0dkt5waM63SrtOu8dGNm7uJzbSErkmKmMmcox00iTLX1rWtj862R5v_j2X3D2exs</recordid><startdate>20221010</startdate><enddate>20221010</enddate><creator>Pathak, Debanjan</creator><creator>Raju, Undi Surya Narayana</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1049-7949</orcidid></search><sort><creationdate>20221010</creationdate><title>Content‐based image retrieval for super‐resolutioned images using feature fusion: Deep learning and hand crafted</title><author>Pathak, Debanjan ; Raju, Undi Surya Narayana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2931-5eb1e5b1a831eb4182643eae6283f3d2e9c88833c77f8df69a636223bac95c7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CBIR</topic><topic>Color</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Diffusion barriers</topic><topic>Feature extraction</topic><topic>feature fusion</topic><topic>Histograms</topic><topic>HOG</topic><topic>Image retrieval</topic><topic>interchannel voting</topic><topic>Parameter modification</topic><topic>Saturation (color)</topic><topic>super‐resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pathak, Debanjan</creatorcontrib><creatorcontrib>Raju, Undi Surya Narayana</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Concurrency and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pathak, Debanjan</au><au>Raju, Undi Surya Narayana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Content‐based image retrieval for super‐resolutioned images using feature fusion: Deep learning and hand crafted</atitle><jtitle>Concurrency and computation</jtitle><date>2022-10-10</date><risdate>2022</risdate><volume>34</volume><issue>22</issue><epage>n/a</epage><issn>1532-0626</issn><eissn>1532-0634</eissn><abstract>An innovative image retrieval agenda by concatenating deep learning features from GoogleNet and low‐level features from HSI and RGB color space is proposed in this article. Most of the CNN features suffer from loss of information due to image resize as a pre‐processing stage. To reduce this information loss super‐resolution technic is used for resizing images. An improved form of dot‐diffused block truncation coding is used for extracting RGB handcraft features. To discover the interdependencies between color and intensity component of an image, interchannel voting between hue, saturation, and intensity component is calculated as a color feature in HSI space. Histogram of orientated gradient (HOG) feature is used as shape feature. Five standard performance parameters, average precision rate, average recall rate, F‐Measure, Average Normalized Modified Retrieval Rank, and Total Minimum Retrieval Epoch, are applied on nine image datasets: Corel‐1K, Corel‐5K, Corel‐10K, VisTex, STex, ColorBrodatz and three subsets of ImageNet dataset for evaluation process of proposed method. For all dataset the best performance is achieved by the proposed method with respect to all performance parameters.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/cpe.6851</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0003-1049-7949</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1532-0626 |
ispartof | Concurrency and computation, 2022-10, Vol.34 (22), p.n/a |
issn | 1532-0626 1532-0634 |
language | eng |
recordid | cdi_proquest_journals_2712645393 |
source | Access via Wiley Online Library |
subjects | CBIR Color Datasets Deep learning Diffusion barriers Feature extraction feature fusion Histograms HOG Image retrieval interchannel voting Parameter modification Saturation (color) super‐resolution |
title | Content‐based image retrieval for super‐resolutioned images using feature fusion: Deep learning and hand crafted |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A15%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Content%E2%80%90based%20image%20retrieval%20for%20super%E2%80%90resolutioned%20images%20using%20feature%20fusion:%20Deep%20learning%20and%20hand%20crafted&rft.jtitle=Concurrency%20and%20computation&rft.au=Pathak,%20Debanjan&rft.date=2022-10-10&rft.volume=34&rft.issue=22&rft.epage=n/a&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002/cpe.6851&rft_dat=%3Cproquest_cross%3E2712645393%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2712645393&rft_id=info:pmid/&rfr_iscdi=true |