Improved extreme learning machine-based dam deformation prediction considering the physical and hysteresis characteristics of the deformation sequence

Accurate modeling and prediction of dam deformation contribute to the analysis of dam safety. Research on data-driven modeling of dam deformation has received increasing attention. However, most established models cannot comprehensively consider the physical characteristics (such as irreversible tre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of civil structural health monitoring 2022-10, Vol.12 (5), p.1173-1190
Hauptverfasser: Cai, Zhijian, Yu, Jia, Chen, Wenlong, Wang, Jiajun, Wang, Xiaoling, Guo, Hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1190
container_issue 5
container_start_page 1173
container_title Journal of civil structural health monitoring
container_volume 12
creator Cai, Zhijian
Yu, Jia
Chen, Wenlong
Wang, Jiajun
Wang, Xiaoling
Guo, Hui
description Accurate modeling and prediction of dam deformation contribute to the analysis of dam safety. Research on data-driven modeling of dam deformation has received increasing attention. However, most established models cannot comprehensively consider the physical characteristics (such as irreversible trend changes, periodic changes, and random changes) and hysteresis characteristics of the deformation sequence. Therefore, an improved extreme learning machine-based dam deformation prediction model was proposed. The parameters of the extreme learning machine were optimized using the improved salp swarm algorithm. For identifying physical characteristics, seasonal and Trend decomposition using Loess was used to decompose the deformation sequence into trend, periodic, and residual items. For the identification of hysteresis characteristics, the phase space reconstruction theory was adopted to solve the problem of selecting the time lag of the deformation subsequence with chaotic characteristics. The proposed model was used to predict the deformation of a concrete dam in China. Furthermore, the model outperformed other alternatives, thus providing a new solution for dam deformation prediction.
doi_str_mv 10.1007/s13349-022-00603-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2712563682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2712563682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-5017b932c5a2f6baeb1e8d777ab93f0c9bf15ef95b355de6c792d1cf8fd9672e3</originalsourceid><addsrcrecordid>eNp9UctOwzAQjBBIVKU_wMkS54AfdRwfUcWjUiUucLYce01cNQ_sFNEf4XtxGgScOO3s7systJNllwRfE4zFTSSMLWWOKc0xLjDL6Uk2o0TinC-FPP3BnJ5nixi3GGNS0qJgdJZ9rps-dO9gEXwMARpAO9Ch9e0rarSpfQt5pWNaW90gC64LjR5816I-gPXmCE3XRm8hjKKhBtTXh-iN3iHdWpTwAAGij8jUOmiTOh8HbyLq3JH-1zXC2x5aAxfZmdO7CIvvOs9e7u-eV4_55ulhvbrd5IYu5ZBzTEQlGTVcU1dUGioCpRVC6DR12MjKEQ5O8opxbqEwQlJLjCudlYWgwObZ1eSbnpAux0Ftu31o00lFBaG8YEVJE4tOLBO6GAM41Qff6HBQBKsxAjVFoFIE6hiBGkVsEsV-_AyEX-t_VF9lF44X</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2712563682</pqid></control><display><type>article</type><title>Improved extreme learning machine-based dam deformation prediction considering the physical and hysteresis characteristics of the deformation sequence</title><source>Springer Nature - Complete Springer Journals</source><creator>Cai, Zhijian ; Yu, Jia ; Chen, Wenlong ; Wang, Jiajun ; Wang, Xiaoling ; Guo, Hui</creator><creatorcontrib>Cai, Zhijian ; Yu, Jia ; Chen, Wenlong ; Wang, Jiajun ; Wang, Xiaoling ; Guo, Hui</creatorcontrib><description>Accurate modeling and prediction of dam deformation contribute to the analysis of dam safety. Research on data-driven modeling of dam deformation has received increasing attention. However, most established models cannot comprehensively consider the physical characteristics (such as irreversible trend changes, periodic changes, and random changes) and hysteresis characteristics of the deformation sequence. Therefore, an improved extreme learning machine-based dam deformation prediction model was proposed. The parameters of the extreme learning machine were optimized using the improved salp swarm algorithm. For identifying physical characteristics, seasonal and Trend decomposition using Loess was used to decompose the deformation sequence into trend, periodic, and residual items. For the identification of hysteresis characteristics, the phase space reconstruction theory was adopted to solve the problem of selecting the time lag of the deformation subsequence with chaotic characteristics. The proposed model was used to predict the deformation of a concrete dam in China. Furthermore, the model outperformed other alternatives, thus providing a new solution for dam deformation prediction.</description><identifier>ISSN: 2190-5452</identifier><identifier>EISSN: 2190-5479</identifier><identifier>DOI: 10.1007/s13349-022-00603-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial neural networks ; Civil Engineering ; Concrete dams ; Control ; Dam safety ; Dams ; Decomposition ; Deformation ; Dynamical Systems ; Engineering ; Hysteresis ; Machine learning ; Measurement Science and Instrumentation ; Modelling ; Original Paper ; Physical properties ; Prediction models ; Time lag ; Vibration</subject><ispartof>Journal of civil structural health monitoring, 2022-10, Vol.12 (5), p.1173-1190</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-5017b932c5a2f6baeb1e8d777ab93f0c9bf15ef95b355de6c792d1cf8fd9672e3</citedby><cites>FETCH-LOGICAL-c249t-5017b932c5a2f6baeb1e8d777ab93f0c9bf15ef95b355de6c792d1cf8fd9672e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13349-022-00603-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13349-022-00603-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Cai, Zhijian</creatorcontrib><creatorcontrib>Yu, Jia</creatorcontrib><creatorcontrib>Chen, Wenlong</creatorcontrib><creatorcontrib>Wang, Jiajun</creatorcontrib><creatorcontrib>Wang, Xiaoling</creatorcontrib><creatorcontrib>Guo, Hui</creatorcontrib><title>Improved extreme learning machine-based dam deformation prediction considering the physical and hysteresis characteristics of the deformation sequence</title><title>Journal of civil structural health monitoring</title><addtitle>J Civil Struct Health Monit</addtitle><description>Accurate modeling and prediction of dam deformation contribute to the analysis of dam safety. Research on data-driven modeling of dam deformation has received increasing attention. However, most established models cannot comprehensively consider the physical characteristics (such as irreversible trend changes, periodic changes, and random changes) and hysteresis characteristics of the deformation sequence. Therefore, an improved extreme learning machine-based dam deformation prediction model was proposed. The parameters of the extreme learning machine were optimized using the improved salp swarm algorithm. For identifying physical characteristics, seasonal and Trend decomposition using Loess was used to decompose the deformation sequence into trend, periodic, and residual items. For the identification of hysteresis characteristics, the phase space reconstruction theory was adopted to solve the problem of selecting the time lag of the deformation subsequence with chaotic characteristics. The proposed model was used to predict the deformation of a concrete dam in China. Furthermore, the model outperformed other alternatives, thus providing a new solution for dam deformation prediction.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Civil Engineering</subject><subject>Concrete dams</subject><subject>Control</subject><subject>Dam safety</subject><subject>Dams</subject><subject>Decomposition</subject><subject>Deformation</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Hysteresis</subject><subject>Machine learning</subject><subject>Measurement Science and Instrumentation</subject><subject>Modelling</subject><subject>Original Paper</subject><subject>Physical properties</subject><subject>Prediction models</subject><subject>Time lag</subject><subject>Vibration</subject><issn>2190-5452</issn><issn>2190-5479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UctOwzAQjBBIVKU_wMkS54AfdRwfUcWjUiUucLYce01cNQ_sFNEf4XtxGgScOO3s7systJNllwRfE4zFTSSMLWWOKc0xLjDL6Uk2o0TinC-FPP3BnJ5nixi3GGNS0qJgdJZ9rps-dO9gEXwMARpAO9Ch9e0rarSpfQt5pWNaW90gC64LjR5816I-gPXmCE3XRm8hjKKhBtTXh-iN3iHdWpTwAAGij8jUOmiTOh8HbyLq3JH-1zXC2x5aAxfZmdO7CIvvOs9e7u-eV4_55ulhvbrd5IYu5ZBzTEQlGTVcU1dUGioCpRVC6DR12MjKEQ5O8opxbqEwQlJLjCudlYWgwObZ1eSbnpAux0Ftu31o00lFBaG8YEVJE4tOLBO6GAM41Qff6HBQBKsxAjVFoFIE6hiBGkVsEsV-_AyEX-t_VF9lF44X</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Cai, Zhijian</creator><creator>Yu, Jia</creator><creator>Chen, Wenlong</creator><creator>Wang, Jiajun</creator><creator>Wang, Xiaoling</creator><creator>Guo, Hui</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221001</creationdate><title>Improved extreme learning machine-based dam deformation prediction considering the physical and hysteresis characteristics of the deformation sequence</title><author>Cai, Zhijian ; Yu, Jia ; Chen, Wenlong ; Wang, Jiajun ; Wang, Xiaoling ; Guo, Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-5017b932c5a2f6baeb1e8d777ab93f0c9bf15ef95b355de6c792d1cf8fd9672e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Civil Engineering</topic><topic>Concrete dams</topic><topic>Control</topic><topic>Dam safety</topic><topic>Dams</topic><topic>Decomposition</topic><topic>Deformation</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Hysteresis</topic><topic>Machine learning</topic><topic>Measurement Science and Instrumentation</topic><topic>Modelling</topic><topic>Original Paper</topic><topic>Physical properties</topic><topic>Prediction models</topic><topic>Time lag</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Zhijian</creatorcontrib><creatorcontrib>Yu, Jia</creatorcontrib><creatorcontrib>Chen, Wenlong</creatorcontrib><creatorcontrib>Wang, Jiajun</creatorcontrib><creatorcontrib>Wang, Xiaoling</creatorcontrib><creatorcontrib>Guo, Hui</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of civil structural health monitoring</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Zhijian</au><au>Yu, Jia</au><au>Chen, Wenlong</au><au>Wang, Jiajun</au><au>Wang, Xiaoling</au><au>Guo, Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved extreme learning machine-based dam deformation prediction considering the physical and hysteresis characteristics of the deformation sequence</atitle><jtitle>Journal of civil structural health monitoring</jtitle><stitle>J Civil Struct Health Monit</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>12</volume><issue>5</issue><spage>1173</spage><epage>1190</epage><pages>1173-1190</pages><issn>2190-5452</issn><eissn>2190-5479</eissn><abstract>Accurate modeling and prediction of dam deformation contribute to the analysis of dam safety. Research on data-driven modeling of dam deformation has received increasing attention. However, most established models cannot comprehensively consider the physical characteristics (such as irreversible trend changes, periodic changes, and random changes) and hysteresis characteristics of the deformation sequence. Therefore, an improved extreme learning machine-based dam deformation prediction model was proposed. The parameters of the extreme learning machine were optimized using the improved salp swarm algorithm. For identifying physical characteristics, seasonal and Trend decomposition using Loess was used to decompose the deformation sequence into trend, periodic, and residual items. For the identification of hysteresis characteristics, the phase space reconstruction theory was adopted to solve the problem of selecting the time lag of the deformation subsequence with chaotic characteristics. The proposed model was used to predict the deformation of a concrete dam in China. Furthermore, the model outperformed other alternatives, thus providing a new solution for dam deformation prediction.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13349-022-00603-2</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2190-5452
ispartof Journal of civil structural health monitoring, 2022-10, Vol.12 (5), p.1173-1190
issn 2190-5452
2190-5479
language eng
recordid cdi_proquest_journals_2712563682
source Springer Nature - Complete Springer Journals
subjects Algorithms
Artificial neural networks
Civil Engineering
Concrete dams
Control
Dam safety
Dams
Decomposition
Deformation
Dynamical Systems
Engineering
Hysteresis
Machine learning
Measurement Science and Instrumentation
Modelling
Original Paper
Physical properties
Prediction models
Time lag
Vibration
title Improved extreme learning machine-based dam deformation prediction considering the physical and hysteresis characteristics of the deformation sequence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T11%3A06%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20extreme%20learning%20machine-based%20dam%20deformation%20prediction%20considering%20the%20physical%20and%20hysteresis%20characteristics%20of%20the%20deformation%20sequence&rft.jtitle=Journal%20of%20civil%20structural%20health%20monitoring&rft.au=Cai,%20Zhijian&rft.date=2022-10-01&rft.volume=12&rft.issue=5&rft.spage=1173&rft.epage=1190&rft.pages=1173-1190&rft.issn=2190-5452&rft.eissn=2190-5479&rft_id=info:doi/10.1007/s13349-022-00603-2&rft_dat=%3Cproquest_cross%3E2712563682%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2712563682&rft_id=info:pmid/&rfr_iscdi=true