Improved extreme learning machine-based dam deformation prediction considering the physical and hysteresis characteristics of the deformation sequence
Accurate modeling and prediction of dam deformation contribute to the analysis of dam safety. Research on data-driven modeling of dam deformation has received increasing attention. However, most established models cannot comprehensively consider the physical characteristics (such as irreversible tre...
Gespeichert in:
Veröffentlicht in: | Journal of civil structural health monitoring 2022-10, Vol.12 (5), p.1173-1190 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1190 |
---|---|
container_issue | 5 |
container_start_page | 1173 |
container_title | Journal of civil structural health monitoring |
container_volume | 12 |
creator | Cai, Zhijian Yu, Jia Chen, Wenlong Wang, Jiajun Wang, Xiaoling Guo, Hui |
description | Accurate modeling and prediction of dam deformation contribute to the analysis of dam safety. Research on data-driven modeling of dam deformation has received increasing attention. However, most established models cannot comprehensively consider the physical characteristics (such as irreversible trend changes, periodic changes, and random changes) and hysteresis characteristics of the deformation sequence. Therefore, an improved extreme learning machine-based dam deformation prediction model was proposed. The parameters of the extreme learning machine were optimized using the improved salp swarm algorithm. For identifying physical characteristics, seasonal and Trend decomposition using Loess was used to decompose the deformation sequence into trend, periodic, and residual items. For the identification of hysteresis characteristics, the phase space reconstruction theory was adopted to solve the problem of selecting the time lag of the deformation subsequence with chaotic characteristics. The proposed model was used to predict the deformation of a concrete dam in China. Furthermore, the model outperformed other alternatives, thus providing a new solution for dam deformation prediction. |
doi_str_mv | 10.1007/s13349-022-00603-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2712563682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2712563682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-5017b932c5a2f6baeb1e8d777ab93f0c9bf15ef95b355de6c792d1cf8fd9672e3</originalsourceid><addsrcrecordid>eNp9UctOwzAQjBBIVKU_wMkS54AfdRwfUcWjUiUucLYce01cNQ_sFNEf4XtxGgScOO3s7systJNllwRfE4zFTSSMLWWOKc0xLjDL6Uk2o0TinC-FPP3BnJ5nixi3GGNS0qJgdJZ9rps-dO9gEXwMARpAO9Ch9e0rarSpfQt5pWNaW90gC64LjR5816I-gPXmCE3XRm8hjKKhBtTXh-iN3iHdWpTwAAGij8jUOmiTOh8HbyLq3JH-1zXC2x5aAxfZmdO7CIvvOs9e7u-eV4_55ulhvbrd5IYu5ZBzTEQlGTVcU1dUGioCpRVC6DR12MjKEQ5O8opxbqEwQlJLjCudlYWgwObZ1eSbnpAux0Ftu31o00lFBaG8YEVJE4tOLBO6GAM41Qff6HBQBKsxAjVFoFIE6hiBGkVsEsV-_AyEX-t_VF9lF44X</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2712563682</pqid></control><display><type>article</type><title>Improved extreme learning machine-based dam deformation prediction considering the physical and hysteresis characteristics of the deformation sequence</title><source>Springer Nature - Complete Springer Journals</source><creator>Cai, Zhijian ; Yu, Jia ; Chen, Wenlong ; Wang, Jiajun ; Wang, Xiaoling ; Guo, Hui</creator><creatorcontrib>Cai, Zhijian ; Yu, Jia ; Chen, Wenlong ; Wang, Jiajun ; Wang, Xiaoling ; Guo, Hui</creatorcontrib><description>Accurate modeling and prediction of dam deformation contribute to the analysis of dam safety. Research on data-driven modeling of dam deformation has received increasing attention. However, most established models cannot comprehensively consider the physical characteristics (such as irreversible trend changes, periodic changes, and random changes) and hysteresis characteristics of the deformation sequence. Therefore, an improved extreme learning machine-based dam deformation prediction model was proposed. The parameters of the extreme learning machine were optimized using the improved salp swarm algorithm. For identifying physical characteristics, seasonal and Trend decomposition using Loess was used to decompose the deformation sequence into trend, periodic, and residual items. For the identification of hysteresis characteristics, the phase space reconstruction theory was adopted to solve the problem of selecting the time lag of the deformation subsequence with chaotic characteristics. The proposed model was used to predict the deformation of a concrete dam in China. Furthermore, the model outperformed other alternatives, thus providing a new solution for dam deformation prediction.</description><identifier>ISSN: 2190-5452</identifier><identifier>EISSN: 2190-5479</identifier><identifier>DOI: 10.1007/s13349-022-00603-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial neural networks ; Civil Engineering ; Concrete dams ; Control ; Dam safety ; Dams ; Decomposition ; Deformation ; Dynamical Systems ; Engineering ; Hysteresis ; Machine learning ; Measurement Science and Instrumentation ; Modelling ; Original Paper ; Physical properties ; Prediction models ; Time lag ; Vibration</subject><ispartof>Journal of civil structural health monitoring, 2022-10, Vol.12 (5), p.1173-1190</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-5017b932c5a2f6baeb1e8d777ab93f0c9bf15ef95b355de6c792d1cf8fd9672e3</citedby><cites>FETCH-LOGICAL-c249t-5017b932c5a2f6baeb1e8d777ab93f0c9bf15ef95b355de6c792d1cf8fd9672e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13349-022-00603-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13349-022-00603-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Cai, Zhijian</creatorcontrib><creatorcontrib>Yu, Jia</creatorcontrib><creatorcontrib>Chen, Wenlong</creatorcontrib><creatorcontrib>Wang, Jiajun</creatorcontrib><creatorcontrib>Wang, Xiaoling</creatorcontrib><creatorcontrib>Guo, Hui</creatorcontrib><title>Improved extreme learning machine-based dam deformation prediction considering the physical and hysteresis characteristics of the deformation sequence</title><title>Journal of civil structural health monitoring</title><addtitle>J Civil Struct Health Monit</addtitle><description>Accurate modeling and prediction of dam deformation contribute to the analysis of dam safety. Research on data-driven modeling of dam deformation has received increasing attention. However, most established models cannot comprehensively consider the physical characteristics (such as irreversible trend changes, periodic changes, and random changes) and hysteresis characteristics of the deformation sequence. Therefore, an improved extreme learning machine-based dam deformation prediction model was proposed. The parameters of the extreme learning machine were optimized using the improved salp swarm algorithm. For identifying physical characteristics, seasonal and Trend decomposition using Loess was used to decompose the deformation sequence into trend, periodic, and residual items. For the identification of hysteresis characteristics, the phase space reconstruction theory was adopted to solve the problem of selecting the time lag of the deformation subsequence with chaotic characteristics. The proposed model was used to predict the deformation of a concrete dam in China. Furthermore, the model outperformed other alternatives, thus providing a new solution for dam deformation prediction.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Civil Engineering</subject><subject>Concrete dams</subject><subject>Control</subject><subject>Dam safety</subject><subject>Dams</subject><subject>Decomposition</subject><subject>Deformation</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Hysteresis</subject><subject>Machine learning</subject><subject>Measurement Science and Instrumentation</subject><subject>Modelling</subject><subject>Original Paper</subject><subject>Physical properties</subject><subject>Prediction models</subject><subject>Time lag</subject><subject>Vibration</subject><issn>2190-5452</issn><issn>2190-5479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UctOwzAQjBBIVKU_wMkS54AfdRwfUcWjUiUucLYce01cNQ_sFNEf4XtxGgScOO3s7systJNllwRfE4zFTSSMLWWOKc0xLjDL6Uk2o0TinC-FPP3BnJ5nixi3GGNS0qJgdJZ9rps-dO9gEXwMARpAO9Ch9e0rarSpfQt5pWNaW90gC64LjR5816I-gPXmCE3XRm8hjKKhBtTXh-iN3iHdWpTwAAGij8jUOmiTOh8HbyLq3JH-1zXC2x5aAxfZmdO7CIvvOs9e7u-eV4_55ulhvbrd5IYu5ZBzTEQlGTVcU1dUGioCpRVC6DR12MjKEQ5O8opxbqEwQlJLjCudlYWgwObZ1eSbnpAux0Ftu31o00lFBaG8YEVJE4tOLBO6GAM41Qff6HBQBKsxAjVFoFIE6hiBGkVsEsV-_AyEX-t_VF9lF44X</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Cai, Zhijian</creator><creator>Yu, Jia</creator><creator>Chen, Wenlong</creator><creator>Wang, Jiajun</creator><creator>Wang, Xiaoling</creator><creator>Guo, Hui</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221001</creationdate><title>Improved extreme learning machine-based dam deformation prediction considering the physical and hysteresis characteristics of the deformation sequence</title><author>Cai, Zhijian ; Yu, Jia ; Chen, Wenlong ; Wang, Jiajun ; Wang, Xiaoling ; Guo, Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-5017b932c5a2f6baeb1e8d777ab93f0c9bf15ef95b355de6c792d1cf8fd9672e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Civil Engineering</topic><topic>Concrete dams</topic><topic>Control</topic><topic>Dam safety</topic><topic>Dams</topic><topic>Decomposition</topic><topic>Deformation</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Hysteresis</topic><topic>Machine learning</topic><topic>Measurement Science and Instrumentation</topic><topic>Modelling</topic><topic>Original Paper</topic><topic>Physical properties</topic><topic>Prediction models</topic><topic>Time lag</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Zhijian</creatorcontrib><creatorcontrib>Yu, Jia</creatorcontrib><creatorcontrib>Chen, Wenlong</creatorcontrib><creatorcontrib>Wang, Jiajun</creatorcontrib><creatorcontrib>Wang, Xiaoling</creatorcontrib><creatorcontrib>Guo, Hui</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of civil structural health monitoring</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Zhijian</au><au>Yu, Jia</au><au>Chen, Wenlong</au><au>Wang, Jiajun</au><au>Wang, Xiaoling</au><au>Guo, Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved extreme learning machine-based dam deformation prediction considering the physical and hysteresis characteristics of the deformation sequence</atitle><jtitle>Journal of civil structural health monitoring</jtitle><stitle>J Civil Struct Health Monit</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>12</volume><issue>5</issue><spage>1173</spage><epage>1190</epage><pages>1173-1190</pages><issn>2190-5452</issn><eissn>2190-5479</eissn><abstract>Accurate modeling and prediction of dam deformation contribute to the analysis of dam safety. Research on data-driven modeling of dam deformation has received increasing attention. However, most established models cannot comprehensively consider the physical characteristics (such as irreversible trend changes, periodic changes, and random changes) and hysteresis characteristics of the deformation sequence. Therefore, an improved extreme learning machine-based dam deformation prediction model was proposed. The parameters of the extreme learning machine were optimized using the improved salp swarm algorithm. For identifying physical characteristics, seasonal and Trend decomposition using Loess was used to decompose the deformation sequence into trend, periodic, and residual items. For the identification of hysteresis characteristics, the phase space reconstruction theory was adopted to solve the problem of selecting the time lag of the deformation subsequence with chaotic characteristics. The proposed model was used to predict the deformation of a concrete dam in China. Furthermore, the model outperformed other alternatives, thus providing a new solution for dam deformation prediction.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13349-022-00603-2</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-5452 |
ispartof | Journal of civil structural health monitoring, 2022-10, Vol.12 (5), p.1173-1190 |
issn | 2190-5452 2190-5479 |
language | eng |
recordid | cdi_proquest_journals_2712563682 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Artificial neural networks Civil Engineering Concrete dams Control Dam safety Dams Decomposition Deformation Dynamical Systems Engineering Hysteresis Machine learning Measurement Science and Instrumentation Modelling Original Paper Physical properties Prediction models Time lag Vibration |
title | Improved extreme learning machine-based dam deformation prediction considering the physical and hysteresis characteristics of the deformation sequence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T11%3A06%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20extreme%20learning%20machine-based%20dam%20deformation%20prediction%20considering%20the%20physical%20and%20hysteresis%20characteristics%20of%20the%20deformation%20sequence&rft.jtitle=Journal%20of%20civil%20structural%20health%20monitoring&rft.au=Cai,%20Zhijian&rft.date=2022-10-01&rft.volume=12&rft.issue=5&rft.spage=1173&rft.epage=1190&rft.pages=1173-1190&rft.issn=2190-5452&rft.eissn=2190-5479&rft_id=info:doi/10.1007/s13349-022-00603-2&rft_dat=%3Cproquest_cross%3E2712563682%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2712563682&rft_id=info:pmid/&rfr_iscdi=true |