Improved Multi-goal Particle Swarm Optimization Algorithm and Multi-output BP Network for Optimal Operation of Power System

To achieve the optimal operation of power system, an improved multi-goal particle swarm optimization (IMPSO) algorithm is proposed in this paper. Based on the multi-goal optimal power flow (MOOPF) calculation, IMPSO algorithm can determine high-quality scheduling schemes which effectively reduce fue...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IAENG international journal of applied mathematics 2022-09, Vol.52 (3), p.1-13
Hauptverfasser: Qian, Jie, Chen, Gonggui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 3
container_start_page 1
container_title IAENG international journal of applied mathematics
container_volume 52
creator Qian, Jie
Chen, Gonggui
description To achieve the optimal operation of power system, an improved multi-goal particle swarm optimization (IMPSO) algorithm is proposed in this paper. Based on the multi-goal optimal power flow (MOOPF) calculation, IMPSO algorithm can determine high-quality scheduling schemes which effectively reduce fuel cost, power loss and exhaust emission. Compared with the basic multi-goal PSO (BMPSO) algorithm, IMPSO algorithm realizes better solution diversity and searching ability by integrating an innovative dominant strategy and the mutation-crossover operation of inferior solutions. Four experiments prove that the proposed IMPSO algorithm achieves more superior Pareto optimal set (POS) and best compromise scheme (BCS) than BMPSO algorithm. Furthermore, the multi-output BP power flow prediction model is put forward in this paper to seek the winning elite schemes (WES) around the BCS of IMPSO algorithm. The presented BP prediction model can find multiple WES schemes of bi-objective and tri-objective MOOPF problems, which realize zero constraint violation and smaller goals. In general, the superior WES schemes determined by proposed IMPSO and BP power flow prediction model are of great help to realize the optimal operation of power system with improved economy and safety.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2712294305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2712294305</sourcerecordid><originalsourceid>FETCH-proquest_journals_27122943053</originalsourceid><addsrcrecordid>eNqNjk9rwkAQxZfSglb9DgOeAzH-iXus0mIPaiDeZbGbuLqbibOzhrZf3oBtz32XN_Deb3gPojuSMomknM8e_-503hHP3p_ieCZbdcX3u6sJr_oD1sGyiUpUFjJFbA5WQ94ocrCt2TjzpdhgBS-2RDJ8dKCqXwgD14FhkcFGc4N0hgLpjrXftrWmO4sFZNhogvzTs3Z98VQo6_Xgx3ti-Pa6W66idtElaM_7Ewaq2mifpKMkkZNxPB3_r3UDCxNQhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2712294305</pqid></control><display><type>article</type><title>Improved Multi-goal Particle Swarm Optimization Algorithm and Multi-output BP Network for Optimal Operation of Power System</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Qian, Jie ; Chen, Gonggui</creator><creatorcontrib>Qian, Jie ; Chen, Gonggui</creatorcontrib><description>To achieve the optimal operation of power system, an improved multi-goal particle swarm optimization (IMPSO) algorithm is proposed in this paper. Based on the multi-goal optimal power flow (MOOPF) calculation, IMPSO algorithm can determine high-quality scheduling schemes which effectively reduce fuel cost, power loss and exhaust emission. Compared with the basic multi-goal PSO (BMPSO) algorithm, IMPSO algorithm realizes better solution diversity and searching ability by integrating an innovative dominant strategy and the mutation-crossover operation of inferior solutions. Four experiments prove that the proposed IMPSO algorithm achieves more superior Pareto optimal set (POS) and best compromise scheme (BCS) than BMPSO algorithm. Furthermore, the multi-output BP power flow prediction model is put forward in this paper to seek the winning elite schemes (WES) around the BCS of IMPSO algorithm. The presented BP prediction model can find multiple WES schemes of bi-objective and tri-objective MOOPF problems, which realize zero constraint violation and smaller goals. In general, the superior WES schemes determined by proposed IMPSO and BP power flow prediction model are of great help to realize the optimal operation of power system with improved economy and safety.</description><identifier>ISSN: 1992-9978</identifier><identifier>EISSN: 1992-9986</identifier><language>eng</language><publisher>Hong Kong: International Association of Engineers</publisher><subject>Algorithms ; Exhaust emission ; Mathematical models ; Optimization ; Particle swarm optimization ; Power flow ; Prediction models ; Scheduling</subject><ispartof>IAENG international journal of applied mathematics, 2022-09, Vol.52 (3), p.1-13</ispartof><rights>2022. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the“License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Qian, Jie</creatorcontrib><creatorcontrib>Chen, Gonggui</creatorcontrib><title>Improved Multi-goal Particle Swarm Optimization Algorithm and Multi-output BP Network for Optimal Operation of Power System</title><title>IAENG international journal of applied mathematics</title><description>To achieve the optimal operation of power system, an improved multi-goal particle swarm optimization (IMPSO) algorithm is proposed in this paper. Based on the multi-goal optimal power flow (MOOPF) calculation, IMPSO algorithm can determine high-quality scheduling schemes which effectively reduce fuel cost, power loss and exhaust emission. Compared with the basic multi-goal PSO (BMPSO) algorithm, IMPSO algorithm realizes better solution diversity and searching ability by integrating an innovative dominant strategy and the mutation-crossover operation of inferior solutions. Four experiments prove that the proposed IMPSO algorithm achieves more superior Pareto optimal set (POS) and best compromise scheme (BCS) than BMPSO algorithm. Furthermore, the multi-output BP power flow prediction model is put forward in this paper to seek the winning elite schemes (WES) around the BCS of IMPSO algorithm. The presented BP prediction model can find multiple WES schemes of bi-objective and tri-objective MOOPF problems, which realize zero constraint violation and smaller goals. In general, the superior WES schemes determined by proposed IMPSO and BP power flow prediction model are of great help to realize the optimal operation of power system with improved economy and safety.</description><subject>Algorithms</subject><subject>Exhaust emission</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Power flow</subject><subject>Prediction models</subject><subject>Scheduling</subject><issn>1992-9978</issn><issn>1992-9986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNjk9rwkAQxZfSglb9DgOeAzH-iXus0mIPaiDeZbGbuLqbibOzhrZf3oBtz32XN_Deb3gPojuSMomknM8e_-503hHP3p_ieCZbdcX3u6sJr_oD1sGyiUpUFjJFbA5WQ94ocrCt2TjzpdhgBS-2RDJ8dKCqXwgD14FhkcFGc4N0hgLpjrXftrWmO4sFZNhogvzTs3Z98VQo6_Xgx3ti-Pa6W66idtElaM_7Ewaq2mifpKMkkZNxPB3_r3UDCxNQhQ</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Qian, Jie</creator><creator>Chen, Gonggui</creator><general>International Association of Engineers</general><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20220901</creationdate><title>Improved Multi-goal Particle Swarm Optimization Algorithm and Multi-output BP Network for Optimal Operation of Power System</title><author>Qian, Jie ; Chen, Gonggui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27122943053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Exhaust emission</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Power flow</topic><topic>Prediction models</topic><topic>Scheduling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qian, Jie</creatorcontrib><creatorcontrib>Chen, Gonggui</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>IAENG international journal of applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qian, Jie</au><au>Chen, Gonggui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Multi-goal Particle Swarm Optimization Algorithm and Multi-output BP Network for Optimal Operation of Power System</atitle><jtitle>IAENG international journal of applied mathematics</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>52</volume><issue>3</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1992-9978</issn><eissn>1992-9986</eissn><abstract>To achieve the optimal operation of power system, an improved multi-goal particle swarm optimization (IMPSO) algorithm is proposed in this paper. Based on the multi-goal optimal power flow (MOOPF) calculation, IMPSO algorithm can determine high-quality scheduling schemes which effectively reduce fuel cost, power loss and exhaust emission. Compared with the basic multi-goal PSO (BMPSO) algorithm, IMPSO algorithm realizes better solution diversity and searching ability by integrating an innovative dominant strategy and the mutation-crossover operation of inferior solutions. Four experiments prove that the proposed IMPSO algorithm achieves more superior Pareto optimal set (POS) and best compromise scheme (BCS) than BMPSO algorithm. Furthermore, the multi-output BP power flow prediction model is put forward in this paper to seek the winning elite schemes (WES) around the BCS of IMPSO algorithm. The presented BP prediction model can find multiple WES schemes of bi-objective and tri-objective MOOPF problems, which realize zero constraint violation and smaller goals. In general, the superior WES schemes determined by proposed IMPSO and BP power flow prediction model are of great help to realize the optimal operation of power system with improved economy and safety.</abstract><cop>Hong Kong</cop><pub>International Association of Engineers</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1992-9978
ispartof IAENG international journal of applied mathematics, 2022-09, Vol.52 (3), p.1-13
issn 1992-9978
1992-9986
language eng
recordid cdi_proquest_journals_2712294305
source EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Exhaust emission
Mathematical models
Optimization
Particle swarm optimization
Power flow
Prediction models
Scheduling
title Improved Multi-goal Particle Swarm Optimization Algorithm and Multi-output BP Network for Optimal Operation of Power System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T13%3A59%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Multi-goal%20Particle%20Swarm%20Optimization%20Algorithm%20and%20Multi-output%20BP%20Network%20for%20Optimal%20Operation%20of%20Power%20System&rft.jtitle=IAENG%20international%20journal%20of%20applied%20mathematics&rft.au=Qian,%20Jie&rft.date=2022-09-01&rft.volume=52&rft.issue=3&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1992-9978&rft.eissn=1992-9986&rft_id=info:doi/&rft_dat=%3Cproquest%3E2712294305%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2712294305&rft_id=info:pmid/&rfr_iscdi=true