Dispersive Fluxes Within and Over a Real Urban Canopy: A Large-Eddy Simulation Study
Large-eddy simulations (LES) are conducted to study the transport of momentum and passive scalar within and over a real urban canopy in the City of Boston, USA. This urban canopy is characterized by complex building layouts, densities and orientations with high-rise buildings. Special attention is g...
Gespeichert in:
Veröffentlicht in: | Boundary-layer meteorology 2022-10, Vol.185 (1), p.93-128 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 128 |
---|---|
container_issue | 1 |
container_start_page | 93 |
container_title | Boundary-layer meteorology |
container_volume | 185 |
creator | Akinlabi, Emmanuel Maronga, Björn Giometto, Marco G. Li, Dan |
description | Large-eddy simulations (LES) are conducted to study the transport of momentum and passive scalar within and over a real urban canopy in the City of Boston, USA. This urban canopy is characterized by complex building layouts, densities and orientations with high-rise buildings. Special attention is given to the magnitude, variability and structure of dispersive momentum and scalar fluxes and their relative importance to turbulent momentum and scalar fluxes. We first evaluate the LES model by comparing the simulated flow statistics over an urban-like canopy to data reported in previous studies. In simulations over the considered real urban canopy, we observe that the dispersive momentum and scalar fluxes can be important beyond 2–5 times the mean building height, which is a commonly used definition for the urban roughness sublayer height. Above the mean building height where the dispersive fluxes become weakly dependent on the grid spacing, the dispersive momentum flux contributes about 10–15% to the sum of turbulent and dispersive momentum fluxes and does not decrease monotonically with increasing height. The dispersive momentum and scalar fluxes are sensitive to the time and spatial averaging. We further find that the constituents of dispersive fluxes are spatially heterogeneous and enhanced by the presence of high-rise buildings. This work suggests the need to parameterize both turbulent and dispersive fluxes over real urban canopies in mesoscale and large-scale models. |
doi_str_mv | 10.1007/s10546-022-00725-6 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2712102932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A716790159</galeid><sourcerecordid>A716790159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-c58c7c8c2f934cc03027595842e9f96cbb74ce07eb5d8439b651a4086f7727e03</originalsourceid><addsrcrecordid>eNp9kEFr3DAQhUVoINtt_kBPgp6VjCTLsntbtkkTWAg0WXIUsjzeavHKW8leuv8-alzorcxheMP7ZoZHyGcONxxA3yYOqigZCMGyFIqVF2TBlZaMF1p8IAsAKFkleXFFPqa0z1JzBQvy8s2nI8bkT0jv--k3Jvrqx58-UBta-nTCSC39gban29jYQNc2DMfzV7qiGxt3yO7a9kyf_WHq7eiHQJ_HqT1_Iped7RNe_-1Lsr2_e1k_sM3T98f1asOcVNXInKqcdpUTXS0L50CC0KpWVSGw7urSNY0uHILGRrVVIeumVNwWUJWd1kIjyCX5Mu89xuHXhGk0-2GKIZ80QnPBQdRSZNfN7NrZHo0P3TBG63K1ePBuCNj5PF9pXuoauKozIGbAxSGliJ05Rn-w8Ww4mD9xmzluk-M273GbMkNyhlI2hx3Gf7_8h3oDw2WAIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2712102932</pqid></control><display><type>article</type><title>Dispersive Fluxes Within and Over a Real Urban Canopy: A Large-Eddy Simulation Study</title><source>SpringerLink Journals - AutoHoldings</source><creator>Akinlabi, Emmanuel ; Maronga, Björn ; Giometto, Marco G. ; Li, Dan</creator><creatorcontrib>Akinlabi, Emmanuel ; Maronga, Björn ; Giometto, Marco G. ; Li, Dan</creatorcontrib><description>Large-eddy simulations (LES) are conducted to study the transport of momentum and passive scalar within and over a real urban canopy in the City of Boston, USA. This urban canopy is characterized by complex building layouts, densities and orientations with high-rise buildings. Special attention is given to the magnitude, variability and structure of dispersive momentum and scalar fluxes and their relative importance to turbulent momentum and scalar fluxes. We first evaluate the LES model by comparing the simulated flow statistics over an urban-like canopy to data reported in previous studies. In simulations over the considered real urban canopy, we observe that the dispersive momentum and scalar fluxes can be important beyond 2–5 times the mean building height, which is a commonly used definition for the urban roughness sublayer height. Above the mean building height where the dispersive fluxes become weakly dependent on the grid spacing, the dispersive momentum flux contributes about 10–15% to the sum of turbulent and dispersive momentum fluxes and does not decrease monotonically with increasing height. The dispersive momentum and scalar fluxes are sensitive to the time and spatial averaging. We further find that the constituents of dispersive fluxes are spatially heterogeneous and enhanced by the presence of high-rise buildings. This work suggests the need to parameterize both turbulent and dispersive fluxes over real urban canopies in mesoscale and large-scale models.</description><identifier>ISSN: 0006-8314</identifier><identifier>EISSN: 1573-1472</identifier><identifier>DOI: 10.1007/s10546-022-00725-6</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Atmospheric Protection/Air Quality Control/Air Pollution ; Atmospheric Sciences ; Buildings ; Canopies ; Canopy ; Dispersion ; Earth and Environmental Science ; Earth Sciences ; Flow simulation ; Fluxes ; Height ; High rise buildings ; Large eddy simulation ; Large eddy simulations ; Large-scale models ; Mean ; Meteorology ; Momentum ; Momentum flux ; Momentum transfer ; Oceanic eddies ; Plant cover ; Research Article ; Roughness ; Scale models ; Skyscrapers ; Statistical methods ; Tall buildings ; Urban areas ; Vortices</subject><ispartof>Boundary-layer meteorology, 2022-10, Vol.185 (1), p.93-128</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-c58c7c8c2f934cc03027595842e9f96cbb74ce07eb5d8439b651a4086f7727e03</citedby><cites>FETCH-LOGICAL-c358t-c58c7c8c2f934cc03027595842e9f96cbb74ce07eb5d8439b651a4086f7727e03</cites><orcidid>0000-0002-4267-4674</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10546-022-00725-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10546-022-00725-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Akinlabi, Emmanuel</creatorcontrib><creatorcontrib>Maronga, Björn</creatorcontrib><creatorcontrib>Giometto, Marco G.</creatorcontrib><creatorcontrib>Li, Dan</creatorcontrib><title>Dispersive Fluxes Within and Over a Real Urban Canopy: A Large-Eddy Simulation Study</title><title>Boundary-layer meteorology</title><addtitle>Boundary-Layer Meteorol</addtitle><description>Large-eddy simulations (LES) are conducted to study the transport of momentum and passive scalar within and over a real urban canopy in the City of Boston, USA. This urban canopy is characterized by complex building layouts, densities and orientations with high-rise buildings. Special attention is given to the magnitude, variability and structure of dispersive momentum and scalar fluxes and their relative importance to turbulent momentum and scalar fluxes. We first evaluate the LES model by comparing the simulated flow statistics over an urban-like canopy to data reported in previous studies. In simulations over the considered real urban canopy, we observe that the dispersive momentum and scalar fluxes can be important beyond 2–5 times the mean building height, which is a commonly used definition for the urban roughness sublayer height. Above the mean building height where the dispersive fluxes become weakly dependent on the grid spacing, the dispersive momentum flux contributes about 10–15% to the sum of turbulent and dispersive momentum fluxes and does not decrease monotonically with increasing height. The dispersive momentum and scalar fluxes are sensitive to the time and spatial averaging. We further find that the constituents of dispersive fluxes are spatially heterogeneous and enhanced by the presence of high-rise buildings. This work suggests the need to parameterize both turbulent and dispersive fluxes over real urban canopies in mesoscale and large-scale models.</description><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Atmospheric Sciences</subject><subject>Buildings</subject><subject>Canopies</subject><subject>Canopy</subject><subject>Dispersion</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Flow simulation</subject><subject>Fluxes</subject><subject>Height</subject><subject>High rise buildings</subject><subject>Large eddy simulation</subject><subject>Large eddy simulations</subject><subject>Large-scale models</subject><subject>Mean</subject><subject>Meteorology</subject><subject>Momentum</subject><subject>Momentum flux</subject><subject>Momentum transfer</subject><subject>Oceanic eddies</subject><subject>Plant cover</subject><subject>Research Article</subject><subject>Roughness</subject><subject>Scale models</subject><subject>Skyscrapers</subject><subject>Statistical methods</subject><subject>Tall buildings</subject><subject>Urban areas</subject><subject>Vortices</subject><issn>0006-8314</issn><issn>1573-1472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEFr3DAQhUVoINtt_kBPgp6VjCTLsntbtkkTWAg0WXIUsjzeavHKW8leuv8-alzorcxheMP7ZoZHyGcONxxA3yYOqigZCMGyFIqVF2TBlZaMF1p8IAsAKFkleXFFPqa0z1JzBQvy8s2nI8bkT0jv--k3Jvrqx58-UBta-nTCSC39gban29jYQNc2DMfzV7qiGxt3yO7a9kyf_WHq7eiHQJ_HqT1_Iped7RNe_-1Lsr2_e1k_sM3T98f1asOcVNXInKqcdpUTXS0L50CC0KpWVSGw7urSNY0uHILGRrVVIeumVNwWUJWd1kIjyCX5Mu89xuHXhGk0-2GKIZ80QnPBQdRSZNfN7NrZHo0P3TBG63K1ePBuCNj5PF9pXuoauKozIGbAxSGliJ05Rn-w8Ww4mD9xmzluk-M273GbMkNyhlI2hx3Gf7_8h3oDw2WAIg</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Akinlabi, Emmanuel</creator><creator>Maronga, Björn</creator><creator>Giometto, Marco G.</creator><creator>Li, Dan</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-4267-4674</orcidid></search><sort><creationdate>20221001</creationdate><title>Dispersive Fluxes Within and Over a Real Urban Canopy: A Large-Eddy Simulation Study</title><author>Akinlabi, Emmanuel ; Maronga, Björn ; Giometto, Marco G. ; Li, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-c58c7c8c2f934cc03027595842e9f96cbb74ce07eb5d8439b651a4086f7727e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Atmospheric Sciences</topic><topic>Buildings</topic><topic>Canopies</topic><topic>Canopy</topic><topic>Dispersion</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Flow simulation</topic><topic>Fluxes</topic><topic>Height</topic><topic>High rise buildings</topic><topic>Large eddy simulation</topic><topic>Large eddy simulations</topic><topic>Large-scale models</topic><topic>Mean</topic><topic>Meteorology</topic><topic>Momentum</topic><topic>Momentum flux</topic><topic>Momentum transfer</topic><topic>Oceanic eddies</topic><topic>Plant cover</topic><topic>Research Article</topic><topic>Roughness</topic><topic>Scale models</topic><topic>Skyscrapers</topic><topic>Statistical methods</topic><topic>Tall buildings</topic><topic>Urban areas</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akinlabi, Emmanuel</creatorcontrib><creatorcontrib>Maronga, Björn</creatorcontrib><creatorcontrib>Giometto, Marco G.</creatorcontrib><creatorcontrib>Li, Dan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Boundary-layer meteorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akinlabi, Emmanuel</au><au>Maronga, Björn</au><au>Giometto, Marco G.</au><au>Li, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dispersive Fluxes Within and Over a Real Urban Canopy: A Large-Eddy Simulation Study</atitle><jtitle>Boundary-layer meteorology</jtitle><stitle>Boundary-Layer Meteorol</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>185</volume><issue>1</issue><spage>93</spage><epage>128</epage><pages>93-128</pages><issn>0006-8314</issn><eissn>1573-1472</eissn><abstract>Large-eddy simulations (LES) are conducted to study the transport of momentum and passive scalar within and over a real urban canopy in the City of Boston, USA. This urban canopy is characterized by complex building layouts, densities and orientations with high-rise buildings. Special attention is given to the magnitude, variability and structure of dispersive momentum and scalar fluxes and their relative importance to turbulent momentum and scalar fluxes. We first evaluate the LES model by comparing the simulated flow statistics over an urban-like canopy to data reported in previous studies. In simulations over the considered real urban canopy, we observe that the dispersive momentum and scalar fluxes can be important beyond 2–5 times the mean building height, which is a commonly used definition for the urban roughness sublayer height. Above the mean building height where the dispersive fluxes become weakly dependent on the grid spacing, the dispersive momentum flux contributes about 10–15% to the sum of turbulent and dispersive momentum fluxes and does not decrease monotonically with increasing height. The dispersive momentum and scalar fluxes are sensitive to the time and spatial averaging. We further find that the constituents of dispersive fluxes are spatially heterogeneous and enhanced by the presence of high-rise buildings. This work suggests the need to parameterize both turbulent and dispersive fluxes over real urban canopies in mesoscale and large-scale models.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10546-022-00725-6</doi><tpages>36</tpages><orcidid>https://orcid.org/0000-0002-4267-4674</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-8314 |
ispartof | Boundary-layer meteorology, 2022-10, Vol.185 (1), p.93-128 |
issn | 0006-8314 1573-1472 |
language | eng |
recordid | cdi_proquest_journals_2712102932 |
source | SpringerLink Journals - AutoHoldings |
subjects | Atmospheric Protection/Air Quality Control/Air Pollution Atmospheric Sciences Buildings Canopies Canopy Dispersion Earth and Environmental Science Earth Sciences Flow simulation Fluxes Height High rise buildings Large eddy simulation Large eddy simulations Large-scale models Mean Meteorology Momentum Momentum flux Momentum transfer Oceanic eddies Plant cover Research Article Roughness Scale models Skyscrapers Statistical methods Tall buildings Urban areas Vortices |
title | Dispersive Fluxes Within and Over a Real Urban Canopy: A Large-Eddy Simulation Study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A15%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dispersive%20Fluxes%20Within%20and%20Over%20a%20Real%20Urban%20Canopy:%20A%20Large-Eddy%20Simulation%20Study&rft.jtitle=Boundary-layer%20meteorology&rft.au=Akinlabi,%20Emmanuel&rft.date=2022-10-01&rft.volume=185&rft.issue=1&rft.spage=93&rft.epage=128&rft.pages=93-128&rft.issn=0006-8314&rft.eissn=1573-1472&rft_id=info:doi/10.1007/s10546-022-00725-6&rft_dat=%3Cgale_proqu%3EA716790159%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2712102932&rft_id=info:pmid/&rft_galeid=A716790159&rfr_iscdi=true |