VG-DropDNet a Robust Architecture for Blood Vessels Segmentation on Retinal Image

Additional layers to the U-Net architecture leads to additional parameters and network complexity. The Visual Geometry Group (VGG) architecture with 16 backbones can overcome the problem with small convolutions. Dense Connected (DenseNet) can be used to avoid excessive feature learning in VGG by dir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.92067-92083
Hauptverfasser: Desiani, Anita, Erwin, Suprihatin, Bambang, Efriliyanti, Filda, Arhami, Muhammad, Setyaningsih, Emy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 92083
container_issue
container_start_page 92067
container_title IEEE access
container_volume 10
creator Desiani, Anita
Erwin
Suprihatin, Bambang
Efriliyanti, Filda
Arhami, Muhammad
Setyaningsih, Emy
description Additional layers to the U-Net architecture leads to additional parameters and network complexity. The Visual Geometry Group (VGG) architecture with 16 backbones can overcome the problem with small convolutions. Dense Connected (DenseNet) can be used to avoid excessive feature learning in VGG by directly connecting each layer using input from the previous feature map. Adding a Dropout layer can protect DenseNet from Overfitting problems. This study proposes a VG-DropDNet architecture that combines VGG, DenseNet, and U-Net with a dropout layer in blood vessels retinal segmentation. VG-DropDNet is applied to Digital Retina Image for Vessel Extraction (DRIVE) and Retina Structured Analysis (STARE) datasets. The results on DRIVE give great accuracy of 95.36%, sensitivity of 79.74% and specificity of 97.61%. The F1-score on DRIVE of 0.8144 indicates that VG-DropDNet has great precision and recall. The IoU result is 68.70. It concludes that the resulting image of VG-DropDNet has a great resemblance to its ground truth. The results on STARE are excellent for accuracy of 98.56%, sensitivity of 91.24%, specificity of 92.99% and IoU of 86.90%. The results of the VGG-DropDNet on STARE show that the proposed method is excellent and robust for blood vessels retinal segmentation. The Cohen's Kappa coefficient obtained by VG-DropDNet at DRIVe is 0.8386 and at STARE is 0.98, it explains that the VG-DropDNet results are consistent and precise in both datasets. The results on various datasets indicate that VG-DropDnet is effective, robust and stable in retinal image blood vessel segmentation.
doi_str_mv 10.1109/ACCESS.2022.3202890
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2712060820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9869834</ieee_id><doaj_id>oai_doaj_org_article_85c53950805549b4b4f797db24d631e7</doaj_id><sourcerecordid>2712060820</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-abddee8d191b2b59ec25767bea28e8a81e2c3e1182f799d1a21de325bdb990923</originalsourceid><addsrcrecordid>eNpNUU1PwzAMrRBIoLFfwCUS5458NG1yHGXAJASCwa5R0rijU7eMJD3w7wkUISzLtp78nmW9LLsgeEYIllfzul6sVjOKKZ2xVIXER9kZJaXMGWfl8b_5NJuGsMUpRIJ4dZY9r-_yG-8ON48QkUYvzgwhorlv3rsITRw8oNZ5dN07Z9EaQoA-oBVsdrCPOnZuj1K-QOz2ukfLnd7AeXbS6j7A9LdPsrfbxWt9nz883S3r-UPeFFjEXBtrAYQlkhhquISG8qqsDGgqQGhBgDYMCBG0raS0RFNigVFurJESS8om2XLUtU5v1cF3O-0_ldOd-gGc3yjtY9f0oARvOJMcC8x5IU1hiqRZWUMLWzICVdK6HLUO3n0MEKLausGnl4KiFaG4xILitMXGrca7EDy0f1cJVt9WqNEK9W2F-rUisS5GVgcAfwwpSilYwb4A9v6DPQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2712060820</pqid></control><display><type>article</type><title>VG-DropDNet a Robust Architecture for Blood Vessels Segmentation on Retinal Image</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Desiani, Anita ; Erwin ; Suprihatin, Bambang ; Efriliyanti, Filda ; Arhami, Muhammad ; Setyaningsih, Emy</creator><creatorcontrib>Desiani, Anita ; Erwin ; Suprihatin, Bambang ; Efriliyanti, Filda ; Arhami, Muhammad ; Setyaningsih, Emy</creatorcontrib><description>Additional layers to the U-Net architecture leads to additional parameters and network complexity. The Visual Geometry Group (VGG) architecture with 16 backbones can overcome the problem with small convolutions. Dense Connected (DenseNet) can be used to avoid excessive feature learning in VGG by directly connecting each layer using input from the previous feature map. Adding a Dropout layer can protect DenseNet from Overfitting problems. This study proposes a VG-DropDNet architecture that combines VGG, DenseNet, and U-Net with a dropout layer in blood vessels retinal segmentation. VG-DropDNet is applied to Digital Retina Image for Vessel Extraction (DRIVE) and Retina Structured Analysis (STARE) datasets. The results on DRIVE give great accuracy of 95.36%, sensitivity of 79.74% and specificity of 97.61%. The F1-score on DRIVE of 0.8144 indicates that VG-DropDNet has great precision and recall. The IoU result is 68.70. It concludes that the resulting image of VG-DropDNet has a great resemblance to its ground truth. The results on STARE are excellent for accuracy of 98.56%, sensitivity of 91.24%, specificity of 92.99% and IoU of 86.90%. The results of the VGG-DropDNet on STARE show that the proposed method is excellent and robust for blood vessels retinal segmentation. The Cohen's Kappa coefficient obtained by VG-DropDNet at DRIVe is 0.8386 and at STARE is 0.98, it explains that the VG-DropDNet results are consistent and precise in both datasets. The results on various datasets indicate that VG-DropDnet is effective, robust and stable in retinal image blood vessel segmentation.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3202890</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Blood vessels ; Computer architecture ; Datasets ; DenseNet ; Digital imaging ; Feature maps ; Image segmentation ; Medical diagnostic imaging ; Neurons ; Retina ; retinal image ; Retinal images ; Robustness ; segmentation ; Sensitivity ; U-Net ; VG-DropDNet</subject><ispartof>IEEE access, 2022, Vol.10, p.92067-92083</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-abddee8d191b2b59ec25767bea28e8a81e2c3e1182f799d1a21de325bdb990923</citedby><cites>FETCH-LOGICAL-c408t-abddee8d191b2b59ec25767bea28e8a81e2c3e1182f799d1a21de325bdb990923</cites><orcidid>0000-0002-5644-2081</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9869834$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Desiani, Anita</creatorcontrib><creatorcontrib>Erwin</creatorcontrib><creatorcontrib>Suprihatin, Bambang</creatorcontrib><creatorcontrib>Efriliyanti, Filda</creatorcontrib><creatorcontrib>Arhami, Muhammad</creatorcontrib><creatorcontrib>Setyaningsih, Emy</creatorcontrib><title>VG-DropDNet a Robust Architecture for Blood Vessels Segmentation on Retinal Image</title><title>IEEE access</title><addtitle>Access</addtitle><description>Additional layers to the U-Net architecture leads to additional parameters and network complexity. The Visual Geometry Group (VGG) architecture with 16 backbones can overcome the problem with small convolutions. Dense Connected (DenseNet) can be used to avoid excessive feature learning in VGG by directly connecting each layer using input from the previous feature map. Adding a Dropout layer can protect DenseNet from Overfitting problems. This study proposes a VG-DropDNet architecture that combines VGG, DenseNet, and U-Net with a dropout layer in blood vessels retinal segmentation. VG-DropDNet is applied to Digital Retina Image for Vessel Extraction (DRIVE) and Retina Structured Analysis (STARE) datasets. The results on DRIVE give great accuracy of 95.36%, sensitivity of 79.74% and specificity of 97.61%. The F1-score on DRIVE of 0.8144 indicates that VG-DropDNet has great precision and recall. The IoU result is 68.70. It concludes that the resulting image of VG-DropDNet has a great resemblance to its ground truth. The results on STARE are excellent for accuracy of 98.56%, sensitivity of 91.24%, specificity of 92.99% and IoU of 86.90%. The results of the VGG-DropDNet on STARE show that the proposed method is excellent and robust for blood vessels retinal segmentation. The Cohen's Kappa coefficient obtained by VG-DropDNet at DRIVe is 0.8386 and at STARE is 0.98, it explains that the VG-DropDNet results are consistent and precise in both datasets. The results on various datasets indicate that VG-DropDnet is effective, robust and stable in retinal image blood vessel segmentation.</description><subject>Blood vessels</subject><subject>Computer architecture</subject><subject>Datasets</subject><subject>DenseNet</subject><subject>Digital imaging</subject><subject>Feature maps</subject><subject>Image segmentation</subject><subject>Medical diagnostic imaging</subject><subject>Neurons</subject><subject>Retina</subject><subject>retinal image</subject><subject>Retinal images</subject><subject>Robustness</subject><subject>segmentation</subject><subject>Sensitivity</subject><subject>U-Net</subject><subject>VG-DropDNet</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PwzAMrRBIoLFfwCUS5458NG1yHGXAJASCwa5R0rijU7eMJD3w7wkUISzLtp78nmW9LLsgeEYIllfzul6sVjOKKZ2xVIXER9kZJaXMGWfl8b_5NJuGsMUpRIJ4dZY9r-_yG-8ON48QkUYvzgwhorlv3rsITRw8oNZ5dN07Z9EaQoA-oBVsdrCPOnZuj1K-QOz2ukfLnd7AeXbS6j7A9LdPsrfbxWt9nz883S3r-UPeFFjEXBtrAYQlkhhquISG8qqsDGgqQGhBgDYMCBG0raS0RFNigVFurJESS8om2XLUtU5v1cF3O-0_ldOd-gGc3yjtY9f0oARvOJMcC8x5IU1hiqRZWUMLWzICVdK6HLUO3n0MEKLausGnl4KiFaG4xILitMXGrca7EDy0f1cJVt9WqNEK9W2F-rUisS5GVgcAfwwpSilYwb4A9v6DPQ</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Desiani, Anita</creator><creator>Erwin</creator><creator>Suprihatin, Bambang</creator><creator>Efriliyanti, Filda</creator><creator>Arhami, Muhammad</creator><creator>Setyaningsih, Emy</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5644-2081</orcidid></search><sort><creationdate>2022</creationdate><title>VG-DropDNet a Robust Architecture for Blood Vessels Segmentation on Retinal Image</title><author>Desiani, Anita ; Erwin ; Suprihatin, Bambang ; Efriliyanti, Filda ; Arhami, Muhammad ; Setyaningsih, Emy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-abddee8d191b2b59ec25767bea28e8a81e2c3e1182f799d1a21de325bdb990923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Blood vessels</topic><topic>Computer architecture</topic><topic>Datasets</topic><topic>DenseNet</topic><topic>Digital imaging</topic><topic>Feature maps</topic><topic>Image segmentation</topic><topic>Medical diagnostic imaging</topic><topic>Neurons</topic><topic>Retina</topic><topic>retinal image</topic><topic>Retinal images</topic><topic>Robustness</topic><topic>segmentation</topic><topic>Sensitivity</topic><topic>U-Net</topic><topic>VG-DropDNet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Desiani, Anita</creatorcontrib><creatorcontrib>Erwin</creatorcontrib><creatorcontrib>Suprihatin, Bambang</creatorcontrib><creatorcontrib>Efriliyanti, Filda</creatorcontrib><creatorcontrib>Arhami, Muhammad</creatorcontrib><creatorcontrib>Setyaningsih, Emy</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Desiani, Anita</au><au>Erwin</au><au>Suprihatin, Bambang</au><au>Efriliyanti, Filda</au><au>Arhami, Muhammad</au><au>Setyaningsih, Emy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>VG-DropDNet a Robust Architecture for Blood Vessels Segmentation on Retinal Image</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>92067</spage><epage>92083</epage><pages>92067-92083</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Additional layers to the U-Net architecture leads to additional parameters and network complexity. The Visual Geometry Group (VGG) architecture with 16 backbones can overcome the problem with small convolutions. Dense Connected (DenseNet) can be used to avoid excessive feature learning in VGG by directly connecting each layer using input from the previous feature map. Adding a Dropout layer can protect DenseNet from Overfitting problems. This study proposes a VG-DropDNet architecture that combines VGG, DenseNet, and U-Net with a dropout layer in blood vessels retinal segmentation. VG-DropDNet is applied to Digital Retina Image for Vessel Extraction (DRIVE) and Retina Structured Analysis (STARE) datasets. The results on DRIVE give great accuracy of 95.36%, sensitivity of 79.74% and specificity of 97.61%. The F1-score on DRIVE of 0.8144 indicates that VG-DropDNet has great precision and recall. The IoU result is 68.70. It concludes that the resulting image of VG-DropDNet has a great resemblance to its ground truth. The results on STARE are excellent for accuracy of 98.56%, sensitivity of 91.24%, specificity of 92.99% and IoU of 86.90%. The results of the VGG-DropDNet on STARE show that the proposed method is excellent and robust for blood vessels retinal segmentation. The Cohen's Kappa coefficient obtained by VG-DropDNet at DRIVe is 0.8386 and at STARE is 0.98, it explains that the VG-DropDNet results are consistent and precise in both datasets. The results on various datasets indicate that VG-DropDnet is effective, robust and stable in retinal image blood vessel segmentation.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3202890</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-5644-2081</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.92067-92083
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2712060820
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Blood vessels
Computer architecture
Datasets
DenseNet
Digital imaging
Feature maps
Image segmentation
Medical diagnostic imaging
Neurons
Retina
retinal image
Retinal images
Robustness
segmentation
Sensitivity
U-Net
VG-DropDNet
title VG-DropDNet a Robust Architecture for Blood Vessels Segmentation on Retinal Image
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A40%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=VG-DropDNet%20a%20Robust%20Architecture%20for%20Blood%20Vessels%20Segmentation%20on%20Retinal%20Image&rft.jtitle=IEEE%20access&rft.au=Desiani,%20Anita&rft.date=2022&rft.volume=10&rft.spage=92067&rft.epage=92083&rft.pages=92067-92083&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3202890&rft_dat=%3Cproquest_doaj_%3E2712060820%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2712060820&rft_id=info:pmid/&rft_ieee_id=9869834&rft_doaj_id=oai_doaj_org_article_85c53950805549b4b4f797db24d631e7&rfr_iscdi=true