VG-DropDNet a Robust Architecture for Blood Vessels Segmentation on Retinal Image
Additional layers to the U-Net architecture leads to additional parameters and network complexity. The Visual Geometry Group (VGG) architecture with 16 backbones can overcome the problem with small convolutions. Dense Connected (DenseNet) can be used to avoid excessive feature learning in VGG by dir...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.92067-92083 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 92083 |
---|---|
container_issue | |
container_start_page | 92067 |
container_title | IEEE access |
container_volume | 10 |
creator | Desiani, Anita Erwin Suprihatin, Bambang Efriliyanti, Filda Arhami, Muhammad Setyaningsih, Emy |
description | Additional layers to the U-Net architecture leads to additional parameters and network complexity. The Visual Geometry Group (VGG) architecture with 16 backbones can overcome the problem with small convolutions. Dense Connected (DenseNet) can be used to avoid excessive feature learning in VGG by directly connecting each layer using input from the previous feature map. Adding a Dropout layer can protect DenseNet from Overfitting problems. This study proposes a VG-DropDNet architecture that combines VGG, DenseNet, and U-Net with a dropout layer in blood vessels retinal segmentation. VG-DropDNet is applied to Digital Retina Image for Vessel Extraction (DRIVE) and Retina Structured Analysis (STARE) datasets. The results on DRIVE give great accuracy of 95.36%, sensitivity of 79.74% and specificity of 97.61%. The F1-score on DRIVE of 0.8144 indicates that VG-DropDNet has great precision and recall. The IoU result is 68.70. It concludes that the resulting image of VG-DropDNet has a great resemblance to its ground truth. The results on STARE are excellent for accuracy of 98.56%, sensitivity of 91.24%, specificity of 92.99% and IoU of 86.90%. The results of the VGG-DropDNet on STARE show that the proposed method is excellent and robust for blood vessels retinal segmentation. The Cohen's Kappa coefficient obtained by VG-DropDNet at DRIVe is 0.8386 and at STARE is 0.98, it explains that the VG-DropDNet results are consistent and precise in both datasets. The results on various datasets indicate that VG-DropDnet is effective, robust and stable in retinal image blood vessel segmentation. |
doi_str_mv | 10.1109/ACCESS.2022.3202890 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2712060820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9869834</ieee_id><doaj_id>oai_doaj_org_article_85c53950805549b4b4f797db24d631e7</doaj_id><sourcerecordid>2712060820</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-abddee8d191b2b59ec25767bea28e8a81e2c3e1182f799d1a21de325bdb990923</originalsourceid><addsrcrecordid>eNpNUU1PwzAMrRBIoLFfwCUS5458NG1yHGXAJASCwa5R0rijU7eMJD3w7wkUISzLtp78nmW9LLsgeEYIllfzul6sVjOKKZ2xVIXER9kZJaXMGWfl8b_5NJuGsMUpRIJ4dZY9r-_yG-8ON48QkUYvzgwhorlv3rsITRw8oNZ5dN07Z9EaQoA-oBVsdrCPOnZuj1K-QOz2ukfLnd7AeXbS6j7A9LdPsrfbxWt9nz883S3r-UPeFFjEXBtrAYQlkhhquISG8qqsDGgqQGhBgDYMCBG0raS0RFNigVFurJESS8om2XLUtU5v1cF3O-0_ldOd-gGc3yjtY9f0oARvOJMcC8x5IU1hiqRZWUMLWzICVdK6HLUO3n0MEKLausGnl4KiFaG4xILitMXGrca7EDy0f1cJVt9WqNEK9W2F-rUisS5GVgcAfwwpSilYwb4A9v6DPQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2712060820</pqid></control><display><type>article</type><title>VG-DropDNet a Robust Architecture for Blood Vessels Segmentation on Retinal Image</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Desiani, Anita ; Erwin ; Suprihatin, Bambang ; Efriliyanti, Filda ; Arhami, Muhammad ; Setyaningsih, Emy</creator><creatorcontrib>Desiani, Anita ; Erwin ; Suprihatin, Bambang ; Efriliyanti, Filda ; Arhami, Muhammad ; Setyaningsih, Emy</creatorcontrib><description>Additional layers to the U-Net architecture leads to additional parameters and network complexity. The Visual Geometry Group (VGG) architecture with 16 backbones can overcome the problem with small convolutions. Dense Connected (DenseNet) can be used to avoid excessive feature learning in VGG by directly connecting each layer using input from the previous feature map. Adding a Dropout layer can protect DenseNet from Overfitting problems. This study proposes a VG-DropDNet architecture that combines VGG, DenseNet, and U-Net with a dropout layer in blood vessels retinal segmentation. VG-DropDNet is applied to Digital Retina Image for Vessel Extraction (DRIVE) and Retina Structured Analysis (STARE) datasets. The results on DRIVE give great accuracy of 95.36%, sensitivity of 79.74% and specificity of 97.61%. The F1-score on DRIVE of 0.8144 indicates that VG-DropDNet has great precision and recall. The IoU result is 68.70. It concludes that the resulting image of VG-DropDNet has a great resemblance to its ground truth. The results on STARE are excellent for accuracy of 98.56%, sensitivity of 91.24%, specificity of 92.99% and IoU of 86.90%. The results of the VGG-DropDNet on STARE show that the proposed method is excellent and robust for blood vessels retinal segmentation. The Cohen's Kappa coefficient obtained by VG-DropDNet at DRIVe is 0.8386 and at STARE is 0.98, it explains that the VG-DropDNet results are consistent and precise in both datasets. The results on various datasets indicate that VG-DropDnet is effective, robust and stable in retinal image blood vessel segmentation.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3202890</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Blood vessels ; Computer architecture ; Datasets ; DenseNet ; Digital imaging ; Feature maps ; Image segmentation ; Medical diagnostic imaging ; Neurons ; Retina ; retinal image ; Retinal images ; Robustness ; segmentation ; Sensitivity ; U-Net ; VG-DropDNet</subject><ispartof>IEEE access, 2022, Vol.10, p.92067-92083</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-abddee8d191b2b59ec25767bea28e8a81e2c3e1182f799d1a21de325bdb990923</citedby><cites>FETCH-LOGICAL-c408t-abddee8d191b2b59ec25767bea28e8a81e2c3e1182f799d1a21de325bdb990923</cites><orcidid>0000-0002-5644-2081</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9869834$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Desiani, Anita</creatorcontrib><creatorcontrib>Erwin</creatorcontrib><creatorcontrib>Suprihatin, Bambang</creatorcontrib><creatorcontrib>Efriliyanti, Filda</creatorcontrib><creatorcontrib>Arhami, Muhammad</creatorcontrib><creatorcontrib>Setyaningsih, Emy</creatorcontrib><title>VG-DropDNet a Robust Architecture for Blood Vessels Segmentation on Retinal Image</title><title>IEEE access</title><addtitle>Access</addtitle><description>Additional layers to the U-Net architecture leads to additional parameters and network complexity. The Visual Geometry Group (VGG) architecture with 16 backbones can overcome the problem with small convolutions. Dense Connected (DenseNet) can be used to avoid excessive feature learning in VGG by directly connecting each layer using input from the previous feature map. Adding a Dropout layer can protect DenseNet from Overfitting problems. This study proposes a VG-DropDNet architecture that combines VGG, DenseNet, and U-Net with a dropout layer in blood vessels retinal segmentation. VG-DropDNet is applied to Digital Retina Image for Vessel Extraction (DRIVE) and Retina Structured Analysis (STARE) datasets. The results on DRIVE give great accuracy of 95.36%, sensitivity of 79.74% and specificity of 97.61%. The F1-score on DRIVE of 0.8144 indicates that VG-DropDNet has great precision and recall. The IoU result is 68.70. It concludes that the resulting image of VG-DropDNet has a great resemblance to its ground truth. The results on STARE are excellent for accuracy of 98.56%, sensitivity of 91.24%, specificity of 92.99% and IoU of 86.90%. The results of the VGG-DropDNet on STARE show that the proposed method is excellent and robust for blood vessels retinal segmentation. The Cohen's Kappa coefficient obtained by VG-DropDNet at DRIVe is 0.8386 and at STARE is 0.98, it explains that the VG-DropDNet results are consistent and precise in both datasets. The results on various datasets indicate that VG-DropDnet is effective, robust and stable in retinal image blood vessel segmentation.</description><subject>Blood vessels</subject><subject>Computer architecture</subject><subject>Datasets</subject><subject>DenseNet</subject><subject>Digital imaging</subject><subject>Feature maps</subject><subject>Image segmentation</subject><subject>Medical diagnostic imaging</subject><subject>Neurons</subject><subject>Retina</subject><subject>retinal image</subject><subject>Retinal images</subject><subject>Robustness</subject><subject>segmentation</subject><subject>Sensitivity</subject><subject>U-Net</subject><subject>VG-DropDNet</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PwzAMrRBIoLFfwCUS5458NG1yHGXAJASCwa5R0rijU7eMJD3w7wkUISzLtp78nmW9LLsgeEYIllfzul6sVjOKKZ2xVIXER9kZJaXMGWfl8b_5NJuGsMUpRIJ4dZY9r-_yG-8ON48QkUYvzgwhorlv3rsITRw8oNZ5dN07Z9EaQoA-oBVsdrCPOnZuj1K-QOz2ukfLnd7AeXbS6j7A9LdPsrfbxWt9nz883S3r-UPeFFjEXBtrAYQlkhhquISG8qqsDGgqQGhBgDYMCBG0raS0RFNigVFurJESS8om2XLUtU5v1cF3O-0_ldOd-gGc3yjtY9f0oARvOJMcC8x5IU1hiqRZWUMLWzICVdK6HLUO3n0MEKLausGnl4KiFaG4xILitMXGrca7EDy0f1cJVt9WqNEK9W2F-rUisS5GVgcAfwwpSilYwb4A9v6DPQ</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Desiani, Anita</creator><creator>Erwin</creator><creator>Suprihatin, Bambang</creator><creator>Efriliyanti, Filda</creator><creator>Arhami, Muhammad</creator><creator>Setyaningsih, Emy</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5644-2081</orcidid></search><sort><creationdate>2022</creationdate><title>VG-DropDNet a Robust Architecture for Blood Vessels Segmentation on Retinal Image</title><author>Desiani, Anita ; Erwin ; Suprihatin, Bambang ; Efriliyanti, Filda ; Arhami, Muhammad ; Setyaningsih, Emy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-abddee8d191b2b59ec25767bea28e8a81e2c3e1182f799d1a21de325bdb990923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Blood vessels</topic><topic>Computer architecture</topic><topic>Datasets</topic><topic>DenseNet</topic><topic>Digital imaging</topic><topic>Feature maps</topic><topic>Image segmentation</topic><topic>Medical diagnostic imaging</topic><topic>Neurons</topic><topic>Retina</topic><topic>retinal image</topic><topic>Retinal images</topic><topic>Robustness</topic><topic>segmentation</topic><topic>Sensitivity</topic><topic>U-Net</topic><topic>VG-DropDNet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Desiani, Anita</creatorcontrib><creatorcontrib>Erwin</creatorcontrib><creatorcontrib>Suprihatin, Bambang</creatorcontrib><creatorcontrib>Efriliyanti, Filda</creatorcontrib><creatorcontrib>Arhami, Muhammad</creatorcontrib><creatorcontrib>Setyaningsih, Emy</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Desiani, Anita</au><au>Erwin</au><au>Suprihatin, Bambang</au><au>Efriliyanti, Filda</au><au>Arhami, Muhammad</au><au>Setyaningsih, Emy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>VG-DropDNet a Robust Architecture for Blood Vessels Segmentation on Retinal Image</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>92067</spage><epage>92083</epage><pages>92067-92083</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Additional layers to the U-Net architecture leads to additional parameters and network complexity. The Visual Geometry Group (VGG) architecture with 16 backbones can overcome the problem with small convolutions. Dense Connected (DenseNet) can be used to avoid excessive feature learning in VGG by directly connecting each layer using input from the previous feature map. Adding a Dropout layer can protect DenseNet from Overfitting problems. This study proposes a VG-DropDNet architecture that combines VGG, DenseNet, and U-Net with a dropout layer in blood vessels retinal segmentation. VG-DropDNet is applied to Digital Retina Image for Vessel Extraction (DRIVE) and Retina Structured Analysis (STARE) datasets. The results on DRIVE give great accuracy of 95.36%, sensitivity of 79.74% and specificity of 97.61%. The F1-score on DRIVE of 0.8144 indicates that VG-DropDNet has great precision and recall. The IoU result is 68.70. It concludes that the resulting image of VG-DropDNet has a great resemblance to its ground truth. The results on STARE are excellent for accuracy of 98.56%, sensitivity of 91.24%, specificity of 92.99% and IoU of 86.90%. The results of the VGG-DropDNet on STARE show that the proposed method is excellent and robust for blood vessels retinal segmentation. The Cohen's Kappa coefficient obtained by VG-DropDNet at DRIVe is 0.8386 and at STARE is 0.98, it explains that the VG-DropDNet results are consistent and precise in both datasets. The results on various datasets indicate that VG-DropDnet is effective, robust and stable in retinal image blood vessel segmentation.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3202890</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-5644-2081</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.92067-92083 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2712060820 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Blood vessels Computer architecture Datasets DenseNet Digital imaging Feature maps Image segmentation Medical diagnostic imaging Neurons Retina retinal image Retinal images Robustness segmentation Sensitivity U-Net VG-DropDNet |
title | VG-DropDNet a Robust Architecture for Blood Vessels Segmentation on Retinal Image |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A40%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=VG-DropDNet%20a%20Robust%20Architecture%20for%20Blood%20Vessels%20Segmentation%20on%20Retinal%20Image&rft.jtitle=IEEE%20access&rft.au=Desiani,%20Anita&rft.date=2022&rft.volume=10&rft.spage=92067&rft.epage=92083&rft.pages=92067-92083&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3202890&rft_dat=%3Cproquest_doaj_%3E2712060820%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2712060820&rft_id=info:pmid/&rft_ieee_id=9869834&rft_doaj_id=oai_doaj_org_article_85c53950805549b4b4f797db24d631e7&rfr_iscdi=true |