Machine Learning-Based Fast Integer and Fractional Vortex Modes Recognition of Partially Occluded Vortex Beams

In this work, a machine learning method is proposed to precisely classify partially occluded integer and fractional vortex modes for the first time in radio frequency (RF). Consequently, we introduce three training schemes, i.e., the direct recognition scheme with the phase data or the amplitude dat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2022-08, Vol.70 (8), p.6775-6784
Hauptverfasser: Sun, Jia-Jing, Sun, Sheng, Yang, Ling-Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6784
container_issue 8
container_start_page 6775
container_title IEEE transactions on antennas and propagation
container_volume 70
creator Sun, Jia-Jing
Sun, Sheng
Yang, Ling-Jun
description In this work, a machine learning method is proposed to precisely classify partially occluded integer and fractional vortex modes for the first time in radio frequency (RF). Consequently, we introduce three training schemes, i.e., the direct recognition scheme with the phase data or the amplitude data (PD-DRS and AD-DRS), the phase data or amplitude data interpolated by nearest-neighbor interpolation algorithm (PD-NNI and AD-NNI), and the full data (FD) of the electric field with the NNI algorithm (FD-NNI), to recognize the topological charges. Based on the designed deep convolutional neural network (DCNN) models, the relationship between the test accuracy and the number of sampling points of the three schemes is presented. It is shown that 3\times3 sampling points are enough for FD-NNI to achieve the classification accuracy of 98.2%. To validate the robustness of the proposed models, we evaluate them on the sample carrying up to 50% Gaussian noise, separately. Besides, the effects of propagation distance and the occlusion angle are also investigated. The numerical results present that the interpolated data performs better in terms of accuracy compared with the pure sampled data, among which FD-NNI possesses better generalization ability, suggesting great potential in the practical application of radio vorticity communication.
doi_str_mv 10.1109/TAP.2022.3161451
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2712054399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9743713</ieee_id><sourcerecordid>2712054399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-63eccac3bae5bb0934cc4829ac900d1376eb5cad15a2ce390c91c4019837e92b3</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRsFbvgpcFz6n7lY89tmK10NIiVbyFyWRaU9JN3U3B_vemtHgaZub3Ho_H2L0UAymFfVoOFwMllBpomUgTywvWk3GcRUopecl6Qsgssir5umY3IWy61WTG9JibAX5XjviUwLvKraMRBCr5GELLJ66lNXkOrjt4wLZqHNT8s_Et_fJZU1Lg74TN2lXHF29WfAG-raCuD3yOWO_LzuqMjwi24ZZdraAOdHeeffYxflk-v0XT-evkeTiNsIvbRokmREBdAMVFIaw2iCZTFtAKUUqdJlTECKWMQSFpK9BKNELaTKdkVaH77PHku_PNz55Cm2-ave_Ch1ylUonYaGs7Spwo9E0Inlb5zldb8IdcivzYat61mh9bzc-tdpKHk6Qion_cpkanUus_QDRzzQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2712054399</pqid></control><display><type>article</type><title>Machine Learning-Based Fast Integer and Fractional Vortex Modes Recognition of Partially Occluded Vortex Beams</title><source>IEEE Electronic Library (IEL)</source><creator>Sun, Jia-Jing ; Sun, Sheng ; Yang, Ling-Jun</creator><creatorcontrib>Sun, Jia-Jing ; Sun, Sheng ; Yang, Ling-Jun</creatorcontrib><description>In this work, a machine learning method is proposed to precisely classify partially occluded integer and fractional vortex modes for the first time in radio frequency (RF). Consequently, we introduce three training schemes, i.e., the direct recognition scheme with the phase data or the amplitude data (PD-DRS and AD-DRS), the phase data or amplitude data interpolated by nearest-neighbor interpolation algorithm (PD-NNI and AD-NNI), and the full data (FD) of the electric field with the NNI algorithm (FD-NNI), to recognize the topological charges. Based on the designed deep convolutional neural network (DCNN) models, the relationship between the test accuracy and the number of sampling points of the three schemes is presented. It is shown that &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;3\times3 &lt;/tex-math&gt;&lt;/inline-formula&gt; sampling points are enough for FD-NNI to achieve the classification accuracy of 98.2%. To validate the robustness of the proposed models, we evaluate them on the sample carrying up to 50% Gaussian noise, separately. Besides, the effects of propagation distance and the occlusion angle are also investigated. The numerical results present that the interpolated data performs better in terms of accuracy compared with the pure sampled data, among which FD-NNI possesses better generalization ability, suggesting great potential in the practical application of radio vorticity communication.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2022.3161451</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Algorithms ; Amplitudes ; Artificial neural networks ; Convolutional neural networks ; Deep convolutional neural network (DCNN) ; deep learning ; Electric fields ; Electron beams ; fractional OAM modes ; Image recognition ; Image resolution ; Integers ; Interpolation ; Machine learning ; Manganese ; Noise propagation ; Occlusion ; orbital angular momentum (OAM) ; Orbits ; Radio frequency ; Random noise ; Recognition ; Robustness (mathematics) ; Sampling ; Training ; vortex modes recognition ; Vorticity</subject><ispartof>IEEE transactions on antennas and propagation, 2022-08, Vol.70 (8), p.6775-6784</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-63eccac3bae5bb0934cc4829ac900d1376eb5cad15a2ce390c91c4019837e92b3</citedby><cites>FETCH-LOGICAL-c221t-63eccac3bae5bb0934cc4829ac900d1376eb5cad15a2ce390c91c4019837e92b3</cites><orcidid>0000-0003-2684-9662 ; 0000-0002-1159-2449</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9743713$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9743713$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sun, Jia-Jing</creatorcontrib><creatorcontrib>Sun, Sheng</creatorcontrib><creatorcontrib>Yang, Ling-Jun</creatorcontrib><title>Machine Learning-Based Fast Integer and Fractional Vortex Modes Recognition of Partially Occluded Vortex Beams</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>In this work, a machine learning method is proposed to precisely classify partially occluded integer and fractional vortex modes for the first time in radio frequency (RF). Consequently, we introduce three training schemes, i.e., the direct recognition scheme with the phase data or the amplitude data (PD-DRS and AD-DRS), the phase data or amplitude data interpolated by nearest-neighbor interpolation algorithm (PD-NNI and AD-NNI), and the full data (FD) of the electric field with the NNI algorithm (FD-NNI), to recognize the topological charges. Based on the designed deep convolutional neural network (DCNN) models, the relationship between the test accuracy and the number of sampling points of the three schemes is presented. It is shown that &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;3\times3 &lt;/tex-math&gt;&lt;/inline-formula&gt; sampling points are enough for FD-NNI to achieve the classification accuracy of 98.2%. To validate the robustness of the proposed models, we evaluate them on the sample carrying up to 50% Gaussian noise, separately. Besides, the effects of propagation distance and the occlusion angle are also investigated. The numerical results present that the interpolated data performs better in terms of accuracy compared with the pure sampled data, among which FD-NNI possesses better generalization ability, suggesting great potential in the practical application of radio vorticity communication.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Amplitudes</subject><subject>Artificial neural networks</subject><subject>Convolutional neural networks</subject><subject>Deep convolutional neural network (DCNN)</subject><subject>deep learning</subject><subject>Electric fields</subject><subject>Electron beams</subject><subject>fractional OAM modes</subject><subject>Image recognition</subject><subject>Image resolution</subject><subject>Integers</subject><subject>Interpolation</subject><subject>Machine learning</subject><subject>Manganese</subject><subject>Noise propagation</subject><subject>Occlusion</subject><subject>orbital angular momentum (OAM)</subject><subject>Orbits</subject><subject>Radio frequency</subject><subject>Random noise</subject><subject>Recognition</subject><subject>Robustness (mathematics)</subject><subject>Sampling</subject><subject>Training</subject><subject>vortex modes recognition</subject><subject>Vorticity</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1Lw0AQxRdRsFbvgpcFz6n7lY89tmK10NIiVbyFyWRaU9JN3U3B_vemtHgaZub3Ho_H2L0UAymFfVoOFwMllBpomUgTywvWk3GcRUopecl6Qsgssir5umY3IWy61WTG9JibAX5XjviUwLvKraMRBCr5GELLJ66lNXkOrjt4wLZqHNT8s_Et_fJZU1Lg74TN2lXHF29WfAG-raCuD3yOWO_LzuqMjwi24ZZdraAOdHeeffYxflk-v0XT-evkeTiNsIvbRokmREBdAMVFIaw2iCZTFtAKUUqdJlTECKWMQSFpK9BKNELaTKdkVaH77PHku_PNz55Cm2-ave_Ch1ylUonYaGs7Spwo9E0Inlb5zldb8IdcivzYat61mh9bzc-tdpKHk6Qion_cpkanUus_QDRzzQ</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Sun, Jia-Jing</creator><creator>Sun, Sheng</creator><creator>Yang, Ling-Jun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2684-9662</orcidid><orcidid>https://orcid.org/0000-0002-1159-2449</orcidid></search><sort><creationdate>20220801</creationdate><title>Machine Learning-Based Fast Integer and Fractional Vortex Modes Recognition of Partially Occluded Vortex Beams</title><author>Sun, Jia-Jing ; Sun, Sheng ; Yang, Ling-Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-63eccac3bae5bb0934cc4829ac900d1376eb5cad15a2ce390c91c4019837e92b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Amplitudes</topic><topic>Artificial neural networks</topic><topic>Convolutional neural networks</topic><topic>Deep convolutional neural network (DCNN)</topic><topic>deep learning</topic><topic>Electric fields</topic><topic>Electron beams</topic><topic>fractional OAM modes</topic><topic>Image recognition</topic><topic>Image resolution</topic><topic>Integers</topic><topic>Interpolation</topic><topic>Machine learning</topic><topic>Manganese</topic><topic>Noise propagation</topic><topic>Occlusion</topic><topic>orbital angular momentum (OAM)</topic><topic>Orbits</topic><topic>Radio frequency</topic><topic>Random noise</topic><topic>Recognition</topic><topic>Robustness (mathematics)</topic><topic>Sampling</topic><topic>Training</topic><topic>vortex modes recognition</topic><topic>Vorticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Jia-Jing</creatorcontrib><creatorcontrib>Sun, Sheng</creatorcontrib><creatorcontrib>Yang, Ling-Jun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sun, Jia-Jing</au><au>Sun, Sheng</au><au>Yang, Ling-Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning-Based Fast Integer and Fractional Vortex Modes Recognition of Partially Occluded Vortex Beams</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>70</volume><issue>8</issue><spage>6775</spage><epage>6784</epage><pages>6775-6784</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>In this work, a machine learning method is proposed to precisely classify partially occluded integer and fractional vortex modes for the first time in radio frequency (RF). Consequently, we introduce three training schemes, i.e., the direct recognition scheme with the phase data or the amplitude data (PD-DRS and AD-DRS), the phase data or amplitude data interpolated by nearest-neighbor interpolation algorithm (PD-NNI and AD-NNI), and the full data (FD) of the electric field with the NNI algorithm (FD-NNI), to recognize the topological charges. Based on the designed deep convolutional neural network (DCNN) models, the relationship between the test accuracy and the number of sampling points of the three schemes is presented. It is shown that &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;3\times3 &lt;/tex-math&gt;&lt;/inline-formula&gt; sampling points are enough for FD-NNI to achieve the classification accuracy of 98.2%. To validate the robustness of the proposed models, we evaluate them on the sample carrying up to 50% Gaussian noise, separately. Besides, the effects of propagation distance and the occlusion angle are also investigated. The numerical results present that the interpolated data performs better in terms of accuracy compared with the pure sampled data, among which FD-NNI possesses better generalization ability, suggesting great potential in the practical application of radio vorticity communication.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2022.3161451</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2684-9662</orcidid><orcidid>https://orcid.org/0000-0002-1159-2449</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 2022-08, Vol.70 (8), p.6775-6784
issn 0018-926X
1558-2221
language eng
recordid cdi_proquest_journals_2712054399
source IEEE Electronic Library (IEL)
subjects Accuracy
Algorithms
Amplitudes
Artificial neural networks
Convolutional neural networks
Deep convolutional neural network (DCNN)
deep learning
Electric fields
Electron beams
fractional OAM modes
Image recognition
Image resolution
Integers
Interpolation
Machine learning
Manganese
Noise propagation
Occlusion
orbital angular momentum (OAM)
Orbits
Radio frequency
Random noise
Recognition
Robustness (mathematics)
Sampling
Training
vortex modes recognition
Vorticity
title Machine Learning-Based Fast Integer and Fractional Vortex Modes Recognition of Partially Occluded Vortex Beams
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T10%3A23%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning-Based%20Fast%20Integer%20and%20Fractional%20Vortex%20Modes%20Recognition%20of%20Partially%20Occluded%20Vortex%20Beams&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Sun,%20Jia-Jing&rft.date=2022-08-01&rft.volume=70&rft.issue=8&rft.spage=6775&rft.epage=6784&rft.pages=6775-6784&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2022.3161451&rft_dat=%3Cproquest_RIE%3E2712054399%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2712054399&rft_id=info:pmid/&rft_ieee_id=9743713&rfr_iscdi=true