Syntax–Aware graph convolutional network for the recognition of chinese implicit inter-sentence relations
In the literature, most previous studies on English implicit inter-sentence relation recognition only focused on semantic interactions, which could not exploit the syntactic interactive information in Chinese due to its complicated syntactic structure characteristics. In this paper, we propose a nov...
Gespeichert in:
Veröffentlicht in: | The Journal of supercomputing 2022-09, Vol.78 (14), p.16529-16552 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16552 |
---|---|
container_issue | 14 |
container_start_page | 16529 |
container_title | The Journal of supercomputing |
container_volume | 78 |
creator | Sun, Kaili Li, Yuan Zhang, Huyin Guo, Chi Yuan, Linfei Hu, Quan |
description | In the literature, most previous studies on English implicit inter-sentence relation recognition only focused on semantic interactions, which could not exploit the syntactic interactive information in Chinese due to its complicated syntactic structure characteristics. In this paper, we propose a novel and effective model DSGCN-RoBERTa to learn the interaction features implied in sentences from both syntactic and semantic perspectives. To generate a rich contextual sentence embedding, we exploit RoBERTa, a large-scale pre-trained language model based on the transformer unit. DSGCN-RoBERTa consists of two key modules, the syntactic interaction and the semantic interaction modules. Specifically, the syntactic interaction module helps capture the depth-level structure information, including non-consecutive words and their relations, while the semantic interaction module enables the model to understand the context from the whole sentence to the local words. Furthermore, on top of such multi-perspective feature representations, we design a strength-dependent matching strategy that is able to adaptively capture the strong relevant interactive information in a fine-grained level. Extensive experiments demonstrate that the proposed method achieved state-of-the-art results on benchmarks Chinese compound sentence corpus CCCS and Chinese discourse corpus CDTB datasets. We also achieve comparable performance on the English corpus PDTB that demonstrates the superiority of our method. |
doi_str_mv | 10.1007/s11227-022-04476-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2711890897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2711890897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ee2365dd53c9e69280c18ee47beba8f691414fa023454f1c436361235c44a1083</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssQ74FTtZVhUvqRILYG257qRNm9rBdoHu-Af-kC8hIUjsWI1Gc-6V5iB0TsklJURdRUoZUxlhLCNCKJnJAzSiueLdWohDNCIlI1mRC3aMTmJcE0IEV3yENo97l8z718fn5M0EwMtg2hW23r36Zpdq70yDHaQ3Hza48gGnFeAA1i9d3V-xr7Bd1Q4i4HrbNrWtE65dgpBF6IazPd6Yno2n6KgyTYSz3zlGzzfXT9O7bPZwez-dzDLLaZkyAMZlvljk3JYgS1YQSwsAoeYwN0UlSyqoqAxhXOSiolZwySVlPLdCGEoKPkYXQ28b_MsOYtJrvwvdJ1EzRWlRkqJUHcUGygYfY4BKt6HemrDXlOheqh6k6k6q_pGqZRfiQyh2sFtC-Kv-J_UNJvB8ag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2711890897</pqid></control><display><type>article</type><title>Syntax–Aware graph convolutional network for the recognition of chinese implicit inter-sentence relations</title><source>SpringerLink Journals</source><creator>Sun, Kaili ; Li, Yuan ; Zhang, Huyin ; Guo, Chi ; Yuan, Linfei ; Hu, Quan</creator><creatorcontrib>Sun, Kaili ; Li, Yuan ; Zhang, Huyin ; Guo, Chi ; Yuan, Linfei ; Hu, Quan</creatorcontrib><description>In the literature, most previous studies on English implicit inter-sentence relation recognition only focused on semantic interactions, which could not exploit the syntactic interactive information in Chinese due to its complicated syntactic structure characteristics. In this paper, we propose a novel and effective model DSGCN-RoBERTa to learn the interaction features implied in sentences from both syntactic and semantic perspectives. To generate a rich contextual sentence embedding, we exploit RoBERTa, a large-scale pre-trained language model based on the transformer unit. DSGCN-RoBERTa consists of two key modules, the syntactic interaction and the semantic interaction modules. Specifically, the syntactic interaction module helps capture the depth-level structure information, including non-consecutive words and their relations, while the semantic interaction module enables the model to understand the context from the whole sentence to the local words. Furthermore, on top of such multi-perspective feature representations, we design a strength-dependent matching strategy that is able to adaptively capture the strong relevant interactive information in a fine-grained level. Extensive experiments demonstrate that the proposed method achieved state-of-the-art results on benchmarks Chinese compound sentence corpus CCCS and Chinese discourse corpus CDTB datasets. We also achieve comparable performance on the English corpus PDTB that demonstrates the superiority of our method.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-022-04476-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial neural networks ; Compilers ; Computer Science ; Interpreters ; Modules ; Processor Architectures ; Programming Languages ; Recognition ; Semantics ; Sentences ; Words (language)</subject><ispartof>The Journal of supercomputing, 2022-09, Vol.78 (14), p.16529-16552</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-ee2365dd53c9e69280c18ee47beba8f691414fa023454f1c436361235c44a1083</citedby><cites>FETCH-LOGICAL-c319t-ee2365dd53c9e69280c18ee47beba8f691414fa023454f1c436361235c44a1083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11227-022-04476-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11227-022-04476-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sun, Kaili</creatorcontrib><creatorcontrib>Li, Yuan</creatorcontrib><creatorcontrib>Zhang, Huyin</creatorcontrib><creatorcontrib>Guo, Chi</creatorcontrib><creatorcontrib>Yuan, Linfei</creatorcontrib><creatorcontrib>Hu, Quan</creatorcontrib><title>Syntax–Aware graph convolutional network for the recognition of chinese implicit inter-sentence relations</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>In the literature, most previous studies on English implicit inter-sentence relation recognition only focused on semantic interactions, which could not exploit the syntactic interactive information in Chinese due to its complicated syntactic structure characteristics. In this paper, we propose a novel and effective model DSGCN-RoBERTa to learn the interaction features implied in sentences from both syntactic and semantic perspectives. To generate a rich contextual sentence embedding, we exploit RoBERTa, a large-scale pre-trained language model based on the transformer unit. DSGCN-RoBERTa consists of two key modules, the syntactic interaction and the semantic interaction modules. Specifically, the syntactic interaction module helps capture the depth-level structure information, including non-consecutive words and their relations, while the semantic interaction module enables the model to understand the context from the whole sentence to the local words. Furthermore, on top of such multi-perspective feature representations, we design a strength-dependent matching strategy that is able to adaptively capture the strong relevant interactive information in a fine-grained level. Extensive experiments demonstrate that the proposed method achieved state-of-the-art results on benchmarks Chinese compound sentence corpus CCCS and Chinese discourse corpus CDTB datasets. We also achieve comparable performance on the English corpus PDTB that demonstrates the superiority of our method.</description><subject>Artificial neural networks</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Interpreters</subject><subject>Modules</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Recognition</subject><subject>Semantics</subject><subject>Sentences</subject><subject>Words (language)</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wssQ74FTtZVhUvqRILYG257qRNm9rBdoHu-Af-kC8hIUjsWI1Gc-6V5iB0TsklJURdRUoZUxlhLCNCKJnJAzSiueLdWohDNCIlI1mRC3aMTmJcE0IEV3yENo97l8z718fn5M0EwMtg2hW23r36Zpdq70yDHaQ3Hza48gGnFeAA1i9d3V-xr7Bd1Q4i4HrbNrWtE65dgpBF6IazPd6Yno2n6KgyTYSz3zlGzzfXT9O7bPZwez-dzDLLaZkyAMZlvljk3JYgS1YQSwsAoeYwN0UlSyqoqAxhXOSiolZwySVlPLdCGEoKPkYXQ28b_MsOYtJrvwvdJ1EzRWlRkqJUHcUGygYfY4BKt6HemrDXlOheqh6k6k6q_pGqZRfiQyh2sFtC-Kv-J_UNJvB8ag</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Sun, Kaili</creator><creator>Li, Yuan</creator><creator>Zhang, Huyin</creator><creator>Guo, Chi</creator><creator>Yuan, Linfei</creator><creator>Hu, Quan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220901</creationdate><title>Syntax–Aware graph convolutional network for the recognition of chinese implicit inter-sentence relations</title><author>Sun, Kaili ; Li, Yuan ; Zhang, Huyin ; Guo, Chi ; Yuan, Linfei ; Hu, Quan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ee2365dd53c9e69280c18ee47beba8f691414fa023454f1c436361235c44a1083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Interpreters</topic><topic>Modules</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Recognition</topic><topic>Semantics</topic><topic>Sentences</topic><topic>Words (language)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Kaili</creatorcontrib><creatorcontrib>Li, Yuan</creatorcontrib><creatorcontrib>Zhang, Huyin</creatorcontrib><creatorcontrib>Guo, Chi</creatorcontrib><creatorcontrib>Yuan, Linfei</creatorcontrib><creatorcontrib>Hu, Quan</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Kaili</au><au>Li, Yuan</au><au>Zhang, Huyin</au><au>Guo, Chi</au><au>Yuan, Linfei</au><au>Hu, Quan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Syntax–Aware graph convolutional network for the recognition of chinese implicit inter-sentence relations</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>78</volume><issue>14</issue><spage>16529</spage><epage>16552</epage><pages>16529-16552</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>In the literature, most previous studies on English implicit inter-sentence relation recognition only focused on semantic interactions, which could not exploit the syntactic interactive information in Chinese due to its complicated syntactic structure characteristics. In this paper, we propose a novel and effective model DSGCN-RoBERTa to learn the interaction features implied in sentences from both syntactic and semantic perspectives. To generate a rich contextual sentence embedding, we exploit RoBERTa, a large-scale pre-trained language model based on the transformer unit. DSGCN-RoBERTa consists of two key modules, the syntactic interaction and the semantic interaction modules. Specifically, the syntactic interaction module helps capture the depth-level structure information, including non-consecutive words and their relations, while the semantic interaction module enables the model to understand the context from the whole sentence to the local words. Furthermore, on top of such multi-perspective feature representations, we design a strength-dependent matching strategy that is able to adaptively capture the strong relevant interactive information in a fine-grained level. Extensive experiments demonstrate that the proposed method achieved state-of-the-art results on benchmarks Chinese compound sentence corpus CCCS and Chinese discourse corpus CDTB datasets. We also achieve comparable performance on the English corpus PDTB that demonstrates the superiority of our method.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-022-04476-6</doi><tpages>24</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-8542 |
ispartof | The Journal of supercomputing, 2022-09, Vol.78 (14), p.16529-16552 |
issn | 0920-8542 1573-0484 |
language | eng |
recordid | cdi_proquest_journals_2711890897 |
source | SpringerLink Journals |
subjects | Artificial neural networks Compilers Computer Science Interpreters Modules Processor Architectures Programming Languages Recognition Semantics Sentences Words (language) |
title | Syntax–Aware graph convolutional network for the recognition of chinese implicit inter-sentence relations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A03%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Syntax%E2%80%93Aware%20graph%20convolutional%20network%20for%20the%20recognition%20of%20chinese%20implicit%20inter-sentence%20relations&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Sun,%20Kaili&rft.date=2022-09-01&rft.volume=78&rft.issue=14&rft.spage=16529&rft.epage=16552&rft.pages=16529-16552&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-022-04476-6&rft_dat=%3Cproquest_cross%3E2711890897%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2711890897&rft_id=info:pmid/&rfr_iscdi=true |