Syntax–Aware graph convolutional network for the recognition of chinese implicit inter-sentence relations

In the literature, most previous studies on English implicit inter-sentence relation recognition only focused on semantic interactions, which could not exploit the syntactic interactive information in Chinese due to its complicated syntactic structure characteristics. In this paper, we propose a nov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing 2022-09, Vol.78 (14), p.16529-16552
Hauptverfasser: Sun, Kaili, Li, Yuan, Zhang, Huyin, Guo, Chi, Yuan, Linfei, Hu, Quan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16552
container_issue 14
container_start_page 16529
container_title The Journal of supercomputing
container_volume 78
creator Sun, Kaili
Li, Yuan
Zhang, Huyin
Guo, Chi
Yuan, Linfei
Hu, Quan
description In the literature, most previous studies on English implicit inter-sentence relation recognition only focused on semantic interactions, which could not exploit the syntactic interactive information in Chinese due to its complicated syntactic structure characteristics. In this paper, we propose a novel and effective model DSGCN-RoBERTa to learn the interaction features implied in sentences from both syntactic and semantic perspectives. To generate a rich contextual sentence embedding, we exploit RoBERTa, a large-scale pre-trained language model based on the transformer unit. DSGCN-RoBERTa consists of two key modules, the syntactic interaction and the semantic interaction modules. Specifically, the syntactic interaction module helps capture the depth-level structure information, including non-consecutive words and their relations, while the semantic interaction module enables the model to understand the context from the whole sentence to the local words. Furthermore, on top of such multi-perspective feature representations, we design a strength-dependent matching strategy that is able to adaptively capture the strong relevant interactive information in a fine-grained level. Extensive experiments demonstrate that the proposed method achieved state-of-the-art results on benchmarks Chinese compound sentence corpus CCCS and Chinese discourse corpus CDTB datasets. We also achieve comparable performance on the English corpus PDTB that demonstrates the superiority of our method.
doi_str_mv 10.1007/s11227-022-04476-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2711890897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2711890897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ee2365dd53c9e69280c18ee47beba8f691414fa023454f1c436361235c44a1083</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssQ74FTtZVhUvqRILYG257qRNm9rBdoHu-Af-kC8hIUjsWI1Gc-6V5iB0TsklJURdRUoZUxlhLCNCKJnJAzSiueLdWohDNCIlI1mRC3aMTmJcE0IEV3yENo97l8z718fn5M0EwMtg2hW23r36Zpdq70yDHaQ3Hza48gGnFeAA1i9d3V-xr7Bd1Q4i4HrbNrWtE65dgpBF6IazPd6Yno2n6KgyTYSz3zlGzzfXT9O7bPZwez-dzDLLaZkyAMZlvljk3JYgS1YQSwsAoeYwN0UlSyqoqAxhXOSiolZwySVlPLdCGEoKPkYXQ28b_MsOYtJrvwvdJ1EzRWlRkqJUHcUGygYfY4BKt6HemrDXlOheqh6k6k6q_pGqZRfiQyh2sFtC-Kv-J_UNJvB8ag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2711890897</pqid></control><display><type>article</type><title>Syntax–Aware graph convolutional network for the recognition of chinese implicit inter-sentence relations</title><source>SpringerLink Journals</source><creator>Sun, Kaili ; Li, Yuan ; Zhang, Huyin ; Guo, Chi ; Yuan, Linfei ; Hu, Quan</creator><creatorcontrib>Sun, Kaili ; Li, Yuan ; Zhang, Huyin ; Guo, Chi ; Yuan, Linfei ; Hu, Quan</creatorcontrib><description>In the literature, most previous studies on English implicit inter-sentence relation recognition only focused on semantic interactions, which could not exploit the syntactic interactive information in Chinese due to its complicated syntactic structure characteristics. In this paper, we propose a novel and effective model DSGCN-RoBERTa to learn the interaction features implied in sentences from both syntactic and semantic perspectives. To generate a rich contextual sentence embedding, we exploit RoBERTa, a large-scale pre-trained language model based on the transformer unit. DSGCN-RoBERTa consists of two key modules, the syntactic interaction and the semantic interaction modules. Specifically, the syntactic interaction module helps capture the depth-level structure information, including non-consecutive words and their relations, while the semantic interaction module enables the model to understand the context from the whole sentence to the local words. Furthermore, on top of such multi-perspective feature representations, we design a strength-dependent matching strategy that is able to adaptively capture the strong relevant interactive information in a fine-grained level. Extensive experiments demonstrate that the proposed method achieved state-of-the-art results on benchmarks Chinese compound sentence corpus CCCS and Chinese discourse corpus CDTB datasets. We also achieve comparable performance on the English corpus PDTB that demonstrates the superiority of our method.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-022-04476-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial neural networks ; Compilers ; Computer Science ; Interpreters ; Modules ; Processor Architectures ; Programming Languages ; Recognition ; Semantics ; Sentences ; Words (language)</subject><ispartof>The Journal of supercomputing, 2022-09, Vol.78 (14), p.16529-16552</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-ee2365dd53c9e69280c18ee47beba8f691414fa023454f1c436361235c44a1083</citedby><cites>FETCH-LOGICAL-c319t-ee2365dd53c9e69280c18ee47beba8f691414fa023454f1c436361235c44a1083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11227-022-04476-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11227-022-04476-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sun, Kaili</creatorcontrib><creatorcontrib>Li, Yuan</creatorcontrib><creatorcontrib>Zhang, Huyin</creatorcontrib><creatorcontrib>Guo, Chi</creatorcontrib><creatorcontrib>Yuan, Linfei</creatorcontrib><creatorcontrib>Hu, Quan</creatorcontrib><title>Syntax–Aware graph convolutional network for the recognition of chinese implicit inter-sentence relations</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>In the literature, most previous studies on English implicit inter-sentence relation recognition only focused on semantic interactions, which could not exploit the syntactic interactive information in Chinese due to its complicated syntactic structure characteristics. In this paper, we propose a novel and effective model DSGCN-RoBERTa to learn the interaction features implied in sentences from both syntactic and semantic perspectives. To generate a rich contextual sentence embedding, we exploit RoBERTa, a large-scale pre-trained language model based on the transformer unit. DSGCN-RoBERTa consists of two key modules, the syntactic interaction and the semantic interaction modules. Specifically, the syntactic interaction module helps capture the depth-level structure information, including non-consecutive words and their relations, while the semantic interaction module enables the model to understand the context from the whole sentence to the local words. Furthermore, on top of such multi-perspective feature representations, we design a strength-dependent matching strategy that is able to adaptively capture the strong relevant interactive information in a fine-grained level. Extensive experiments demonstrate that the proposed method achieved state-of-the-art results on benchmarks Chinese compound sentence corpus CCCS and Chinese discourse corpus CDTB datasets. We also achieve comparable performance on the English corpus PDTB that demonstrates the superiority of our method.</description><subject>Artificial neural networks</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Interpreters</subject><subject>Modules</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Recognition</subject><subject>Semantics</subject><subject>Sentences</subject><subject>Words (language)</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wssQ74FTtZVhUvqRILYG257qRNm9rBdoHu-Af-kC8hIUjsWI1Gc-6V5iB0TsklJURdRUoZUxlhLCNCKJnJAzSiueLdWohDNCIlI1mRC3aMTmJcE0IEV3yENo97l8z718fn5M0EwMtg2hW23r36Zpdq70yDHaQ3Hza48gGnFeAA1i9d3V-xr7Bd1Q4i4HrbNrWtE65dgpBF6IazPd6Yno2n6KgyTYSz3zlGzzfXT9O7bPZwez-dzDLLaZkyAMZlvljk3JYgS1YQSwsAoeYwN0UlSyqoqAxhXOSiolZwySVlPLdCGEoKPkYXQ28b_MsOYtJrvwvdJ1EzRWlRkqJUHcUGygYfY4BKt6HemrDXlOheqh6k6k6q_pGqZRfiQyh2sFtC-Kv-J_UNJvB8ag</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Sun, Kaili</creator><creator>Li, Yuan</creator><creator>Zhang, Huyin</creator><creator>Guo, Chi</creator><creator>Yuan, Linfei</creator><creator>Hu, Quan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220901</creationdate><title>Syntax–Aware graph convolutional network for the recognition of chinese implicit inter-sentence relations</title><author>Sun, Kaili ; Li, Yuan ; Zhang, Huyin ; Guo, Chi ; Yuan, Linfei ; Hu, Quan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ee2365dd53c9e69280c18ee47beba8f691414fa023454f1c436361235c44a1083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Interpreters</topic><topic>Modules</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Recognition</topic><topic>Semantics</topic><topic>Sentences</topic><topic>Words (language)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Kaili</creatorcontrib><creatorcontrib>Li, Yuan</creatorcontrib><creatorcontrib>Zhang, Huyin</creatorcontrib><creatorcontrib>Guo, Chi</creatorcontrib><creatorcontrib>Yuan, Linfei</creatorcontrib><creatorcontrib>Hu, Quan</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Kaili</au><au>Li, Yuan</au><au>Zhang, Huyin</au><au>Guo, Chi</au><au>Yuan, Linfei</au><au>Hu, Quan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Syntax–Aware graph convolutional network for the recognition of chinese implicit inter-sentence relations</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>78</volume><issue>14</issue><spage>16529</spage><epage>16552</epage><pages>16529-16552</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>In the literature, most previous studies on English implicit inter-sentence relation recognition only focused on semantic interactions, which could not exploit the syntactic interactive information in Chinese due to its complicated syntactic structure characteristics. In this paper, we propose a novel and effective model DSGCN-RoBERTa to learn the interaction features implied in sentences from both syntactic and semantic perspectives. To generate a rich contextual sentence embedding, we exploit RoBERTa, a large-scale pre-trained language model based on the transformer unit. DSGCN-RoBERTa consists of two key modules, the syntactic interaction and the semantic interaction modules. Specifically, the syntactic interaction module helps capture the depth-level structure information, including non-consecutive words and their relations, while the semantic interaction module enables the model to understand the context from the whole sentence to the local words. Furthermore, on top of such multi-perspective feature representations, we design a strength-dependent matching strategy that is able to adaptively capture the strong relevant interactive information in a fine-grained level. Extensive experiments demonstrate that the proposed method achieved state-of-the-art results on benchmarks Chinese compound sentence corpus CCCS and Chinese discourse corpus CDTB datasets. We also achieve comparable performance on the English corpus PDTB that demonstrates the superiority of our method.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-022-04476-6</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0920-8542
ispartof The Journal of supercomputing, 2022-09, Vol.78 (14), p.16529-16552
issn 0920-8542
1573-0484
language eng
recordid cdi_proquest_journals_2711890897
source SpringerLink Journals
subjects Artificial neural networks
Compilers
Computer Science
Interpreters
Modules
Processor Architectures
Programming Languages
Recognition
Semantics
Sentences
Words (language)
title Syntax–Aware graph convolutional network for the recognition of chinese implicit inter-sentence relations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A03%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Syntax%E2%80%93Aware%20graph%20convolutional%20network%20for%20the%20recognition%20of%20chinese%20implicit%20inter-sentence%20relations&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Sun,%20Kaili&rft.date=2022-09-01&rft.volume=78&rft.issue=14&rft.spage=16529&rft.epage=16552&rft.pages=16529-16552&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-022-04476-6&rft_dat=%3Cproquest_cross%3E2711890897%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2711890897&rft_id=info:pmid/&rfr_iscdi=true