Dynamical electromagnetic actuation system for microscale manipulation

Electromagnetic actuation systems (EMA) have excelled themselves in microscale manipulation. Yet, the fastened structure of the current systems tethers the controlled workspace. In this paper, a new electromagnetic actuation principle is investigated. The actuator structure consists of a pair of coa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Robotica 2022-10, Vol.40 (10), p.3586-3603
Hauptverfasser: Çetin, Levent, Alasli, Abdulkareem, Akçura, Nail, Kahveci, Aytaç, Can, Fatih Cemal, Tamer, Özgür
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3603
container_issue 10
container_start_page 3586
container_title Robotica
container_volume 40
creator Çetin, Levent
Alasli, Abdulkareem
Akçura, Nail
Kahveci, Aytaç
Can, Fatih Cemal
Tamer, Özgür
description Electromagnetic actuation systems (EMA) have excelled themselves in microscale manipulation. Yet, the fastened structure of the current systems tethers the controlled workspace. In this paper, a new electromagnetic actuation principle is investigated. The actuator structure consists of a pair of coaxially movable electromagnets integrated to a robotic manipulator. The pair induces a coaxial homogeneous magnetic field or gradient to control the magnitude of the magnetic torque or force by changing the distance between the electromagnets asymmetrically. The robotic manipulator, on the other hand, transports the pair at five degrees of freedom to manipulate a microrobot in 3D space by closed-loop control with integrated vision feedback system. Numerical analyses are performed to investigate the induced electromagnetic field at the symmetrical/asymmetrical configuration of the coaxial pair. Accordingly, a correlation between the magnitude of the magnetic force and the asymmetric distance is obtained for flexible force control. A proof of concept prototype is constructed to validate the proposed actuation principle and evaluate its performance experimentally. The experimental results verify the numerical analysis and show the system applicability of inducing controlled forces on a micro-object in 2D and 3D workspaces at a velocity range of 65 to 157 $\mu$ m/s. Moreover, micromanipulation on a helical route is also demonstrated with an absolute error mean from the reference path of 191 $\mu$ m.
doi_str_mv 10.1017/S0263574722000418
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2711787727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0263574722000418</cupid><sourcerecordid>2711787727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-3b2f4b854f900c481abee5439c1773fcddeb43029ff8e35e18f70fc9966897513</originalsourceid><addsrcrecordid>eNp1kD9PwzAQxS0EEqXwAdgiMQd8tpNzRlRoQarEAMyR456rVPlTbGfotyehlRgQ0w3v997dPcZugd8DB3x45yKXGSoUgnOuQJ-xGai8SHWe63M2m-R00i_ZVQg7zkGCwhlbPh0609bWNAk1ZKPvW7PtKNY2MTYOJtZ9l4RDiNQmrvfJiPo-jDglrenq_dD8INfswpkm0M1pztnn8vlj8ZKu31avi8d1aoXCmMpKOFXpTLmCc6s0mIooU7KwgCid3WyoUpKLwjlNMiPQDrmzRTE-UWAGcs7ujrl7338NFGK56wffjStLgQCoEQWOFByp6dbgyZV7X7fGH0rg5VRX-aeu0SNPHtNWvt5s6Tf6f9c3MZBsoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2711787727</pqid></control><display><type>article</type><title>Dynamical electromagnetic actuation system for microscale manipulation</title><source>Cambridge University Press Journals Complete</source><creator>Çetin, Levent ; Alasli, Abdulkareem ; Akçura, Nail ; Kahveci, Aytaç ; Can, Fatih Cemal ; Tamer, Özgür</creator><creatorcontrib>Çetin, Levent ; Alasli, Abdulkareem ; Akçura, Nail ; Kahveci, Aytaç ; Can, Fatih Cemal ; Tamer, Özgür</creatorcontrib><description>Electromagnetic actuation systems (EMA) have excelled themselves in microscale manipulation. Yet, the fastened structure of the current systems tethers the controlled workspace. In this paper, a new electromagnetic actuation principle is investigated. The actuator structure consists of a pair of coaxially movable electromagnets integrated to a robotic manipulator. The pair induces a coaxial homogeneous magnetic field or gradient to control the magnitude of the magnetic torque or force by changing the distance between the electromagnets asymmetrically. The robotic manipulator, on the other hand, transports the pair at five degrees of freedom to manipulate a microrobot in 3D space by closed-loop control with integrated vision feedback system. Numerical analyses are performed to investigate the induced electromagnetic field at the symmetrical/asymmetrical configuration of the coaxial pair. Accordingly, a correlation between the magnitude of the magnetic force and the asymmetric distance is obtained for flexible force control. A proof of concept prototype is constructed to validate the proposed actuation principle and evaluate its performance experimentally. The experimental results verify the numerical analysis and show the system applicability of inducing controlled forces on a micro-object in 2D and 3D workspaces at a velocity range of 65 to 157 $\mu$ m/s. Moreover, micromanipulation on a helical route is also demonstrated with an absolute error mean from the reference path of 191 $\mu$ m.</description><identifier>ISSN: 0263-5747</identifier><identifier>EISSN: 1469-8668</identifier><identifier>DOI: 10.1017/S0263574722000418</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Actuation ; Actuators ; Asymmetry ; Design ; Electromagnetic fields ; Feedback control ; Magnetic fields ; Magnetism ; Manipulators ; Micromanipulation ; Microrobots ; Numerical analysis ; Principles ; Robot arms ; Robotics</subject><ispartof>Robotica, 2022-10, Vol.40 (10), p.3586-3603</ispartof><rights>The Author(s), 2022. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c247t-3b2f4b854f900c481abee5439c1773fcddeb43029ff8e35e18f70fc9966897513</citedby><cites>FETCH-LOGICAL-c247t-3b2f4b854f900c481abee5439c1773fcddeb43029ff8e35e18f70fc9966897513</cites><orcidid>0000-0002-7041-0529 ; 0000-0002-1681-0492</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0263574722000418/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27903,27904,55606</link.rule.ids></links><search><creatorcontrib>Çetin, Levent</creatorcontrib><creatorcontrib>Alasli, Abdulkareem</creatorcontrib><creatorcontrib>Akçura, Nail</creatorcontrib><creatorcontrib>Kahveci, Aytaç</creatorcontrib><creatorcontrib>Can, Fatih Cemal</creatorcontrib><creatorcontrib>Tamer, Özgür</creatorcontrib><title>Dynamical electromagnetic actuation system for microscale manipulation</title><title>Robotica</title><addtitle>Robotica</addtitle><description>Electromagnetic actuation systems (EMA) have excelled themselves in microscale manipulation. Yet, the fastened structure of the current systems tethers the controlled workspace. In this paper, a new electromagnetic actuation principle is investigated. The actuator structure consists of a pair of coaxially movable electromagnets integrated to a robotic manipulator. The pair induces a coaxial homogeneous magnetic field or gradient to control the magnitude of the magnetic torque or force by changing the distance between the electromagnets asymmetrically. The robotic manipulator, on the other hand, transports the pair at five degrees of freedom to manipulate a microrobot in 3D space by closed-loop control with integrated vision feedback system. Numerical analyses are performed to investigate the induced electromagnetic field at the symmetrical/asymmetrical configuration of the coaxial pair. Accordingly, a correlation between the magnitude of the magnetic force and the asymmetric distance is obtained for flexible force control. A proof of concept prototype is constructed to validate the proposed actuation principle and evaluate its performance experimentally. The experimental results verify the numerical analysis and show the system applicability of inducing controlled forces on a micro-object in 2D and 3D workspaces at a velocity range of 65 to 157 $\mu$ m/s. Moreover, micromanipulation on a helical route is also demonstrated with an absolute error mean from the reference path of 191 $\mu$ m.</description><subject>Actuation</subject><subject>Actuators</subject><subject>Asymmetry</subject><subject>Design</subject><subject>Electromagnetic fields</subject><subject>Feedback control</subject><subject>Magnetic fields</subject><subject>Magnetism</subject><subject>Manipulators</subject><subject>Micromanipulation</subject><subject>Microrobots</subject><subject>Numerical analysis</subject><subject>Principles</subject><subject>Robot arms</subject><subject>Robotics</subject><issn>0263-5747</issn><issn>1469-8668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kD9PwzAQxS0EEqXwAdgiMQd8tpNzRlRoQarEAMyR456rVPlTbGfotyehlRgQ0w3v997dPcZugd8DB3x45yKXGSoUgnOuQJ-xGai8SHWe63M2m-R00i_ZVQg7zkGCwhlbPh0609bWNAk1ZKPvW7PtKNY2MTYOJtZ9l4RDiNQmrvfJiPo-jDglrenq_dD8INfswpkm0M1pztnn8vlj8ZKu31avi8d1aoXCmMpKOFXpTLmCc6s0mIooU7KwgCid3WyoUpKLwjlNMiPQDrmzRTE-UWAGcs7ujrl7338NFGK56wffjStLgQCoEQWOFByp6dbgyZV7X7fGH0rg5VRX-aeu0SNPHtNWvt5s6Tf6f9c3MZBsoQ</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Çetin, Levent</creator><creator>Alasli, Abdulkareem</creator><creator>Akçura, Nail</creator><creator>Kahveci, Aytaç</creator><creator>Can, Fatih Cemal</creator><creator>Tamer, Özgür</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-7041-0529</orcidid><orcidid>https://orcid.org/0000-0002-1681-0492</orcidid></search><sort><creationdate>202210</creationdate><title>Dynamical electromagnetic actuation system for microscale manipulation</title><author>Çetin, Levent ; Alasli, Abdulkareem ; Akçura, Nail ; Kahveci, Aytaç ; Can, Fatih Cemal ; Tamer, Özgür</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-3b2f4b854f900c481abee5439c1773fcddeb43029ff8e35e18f70fc9966897513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Actuation</topic><topic>Actuators</topic><topic>Asymmetry</topic><topic>Design</topic><topic>Electromagnetic fields</topic><topic>Feedback control</topic><topic>Magnetic fields</topic><topic>Magnetism</topic><topic>Manipulators</topic><topic>Micromanipulation</topic><topic>Microrobots</topic><topic>Numerical analysis</topic><topic>Principles</topic><topic>Robot arms</topic><topic>Robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Çetin, Levent</creatorcontrib><creatorcontrib>Alasli, Abdulkareem</creatorcontrib><creatorcontrib>Akçura, Nail</creatorcontrib><creatorcontrib>Kahveci, Aytaç</creatorcontrib><creatorcontrib>Can, Fatih Cemal</creatorcontrib><creatorcontrib>Tamer, Özgür</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Robotica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Çetin, Levent</au><au>Alasli, Abdulkareem</au><au>Akçura, Nail</au><au>Kahveci, Aytaç</au><au>Can, Fatih Cemal</au><au>Tamer, Özgür</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamical electromagnetic actuation system for microscale manipulation</atitle><jtitle>Robotica</jtitle><addtitle>Robotica</addtitle><date>2022-10</date><risdate>2022</risdate><volume>40</volume><issue>10</issue><spage>3586</spage><epage>3603</epage><pages>3586-3603</pages><issn>0263-5747</issn><eissn>1469-8668</eissn><abstract>Electromagnetic actuation systems (EMA) have excelled themselves in microscale manipulation. Yet, the fastened structure of the current systems tethers the controlled workspace. In this paper, a new electromagnetic actuation principle is investigated. The actuator structure consists of a pair of coaxially movable electromagnets integrated to a robotic manipulator. The pair induces a coaxial homogeneous magnetic field or gradient to control the magnitude of the magnetic torque or force by changing the distance between the electromagnets asymmetrically. The robotic manipulator, on the other hand, transports the pair at five degrees of freedom to manipulate a microrobot in 3D space by closed-loop control with integrated vision feedback system. Numerical analyses are performed to investigate the induced electromagnetic field at the symmetrical/asymmetrical configuration of the coaxial pair. Accordingly, a correlation between the magnitude of the magnetic force and the asymmetric distance is obtained for flexible force control. A proof of concept prototype is constructed to validate the proposed actuation principle and evaluate its performance experimentally. The experimental results verify the numerical analysis and show the system applicability of inducing controlled forces on a micro-object in 2D and 3D workspaces at a velocity range of 65 to 157 $\mu$ m/s. Moreover, micromanipulation on a helical route is also demonstrated with an absolute error mean from the reference path of 191 $\mu$ m.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0263574722000418</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-7041-0529</orcidid><orcidid>https://orcid.org/0000-0002-1681-0492</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0263-5747
ispartof Robotica, 2022-10, Vol.40 (10), p.3586-3603
issn 0263-5747
1469-8668
language eng
recordid cdi_proquest_journals_2711787727
source Cambridge University Press Journals Complete
subjects Actuation
Actuators
Asymmetry
Design
Electromagnetic fields
Feedback control
Magnetic fields
Magnetism
Manipulators
Micromanipulation
Microrobots
Numerical analysis
Principles
Robot arms
Robotics
title Dynamical electromagnetic actuation system for microscale manipulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T08%3A22%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamical%20electromagnetic%20actuation%20system%20for%20microscale%20manipulation&rft.jtitle=Robotica&rft.au=%C3%87etin,%20Levent&rft.date=2022-10&rft.volume=40&rft.issue=10&rft.spage=3586&rft.epage=3603&rft.pages=3586-3603&rft.issn=0263-5747&rft.eissn=1469-8668&rft_id=info:doi/10.1017/S0263574722000418&rft_dat=%3Cproquest_cross%3E2711787727%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2711787727&rft_id=info:pmid/&rft_cupid=10_1017_S0263574722000418&rfr_iscdi=true