Dynamical electromagnetic actuation system for microscale manipulation
Electromagnetic actuation systems (EMA) have excelled themselves in microscale manipulation. Yet, the fastened structure of the current systems tethers the controlled workspace. In this paper, a new electromagnetic actuation principle is investigated. The actuator structure consists of a pair of coa...
Gespeichert in:
Veröffentlicht in: | Robotica 2022-10, Vol.40 (10), p.3586-3603 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3603 |
---|---|
container_issue | 10 |
container_start_page | 3586 |
container_title | Robotica |
container_volume | 40 |
creator | Çetin, Levent Alasli, Abdulkareem Akçura, Nail Kahveci, Aytaç Can, Fatih Cemal Tamer, Özgür |
description | Electromagnetic actuation systems (EMA) have excelled themselves in microscale manipulation. Yet, the fastened structure of the current systems tethers the controlled workspace. In this paper, a new electromagnetic actuation principle is investigated. The actuator structure consists of a pair of coaxially movable electromagnets integrated to a robotic manipulator. The pair induces a coaxial homogeneous magnetic field or gradient to control the magnitude of the magnetic torque or force by changing the distance between the electromagnets asymmetrically. The robotic manipulator, on the other hand, transports the pair at five degrees of freedom to manipulate a microrobot in 3D space by closed-loop control with integrated vision feedback system. Numerical analyses are performed to investigate the induced electromagnetic field at the symmetrical/asymmetrical configuration of the coaxial pair. Accordingly, a correlation between the magnitude of the magnetic force and the asymmetric distance is obtained for flexible force control. A proof of concept prototype is constructed to validate the proposed actuation principle and evaluate its performance experimentally. The experimental results verify the numerical analysis and show the system applicability of inducing controlled forces on a micro-object in 2D and 3D workspaces at a velocity range of 65 to 157
$\mu$
m/s. Moreover, micromanipulation on a helical route is also demonstrated with an absolute error mean from the reference path of 191
$\mu$
m. |
doi_str_mv | 10.1017/S0263574722000418 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2711787727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0263574722000418</cupid><sourcerecordid>2711787727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-3b2f4b854f900c481abee5439c1773fcddeb43029ff8e35e18f70fc9966897513</originalsourceid><addsrcrecordid>eNp1kD9PwzAQxS0EEqXwAdgiMQd8tpNzRlRoQarEAMyR456rVPlTbGfotyehlRgQ0w3v997dPcZugd8DB3x45yKXGSoUgnOuQJ-xGai8SHWe63M2m-R00i_ZVQg7zkGCwhlbPh0609bWNAk1ZKPvW7PtKNY2MTYOJtZ9l4RDiNQmrvfJiPo-jDglrenq_dD8INfswpkm0M1pztnn8vlj8ZKu31avi8d1aoXCmMpKOFXpTLmCc6s0mIooU7KwgCid3WyoUpKLwjlNMiPQDrmzRTE-UWAGcs7ujrl7338NFGK56wffjStLgQCoEQWOFByp6dbgyZV7X7fGH0rg5VRX-aeu0SNPHtNWvt5s6Tf6f9c3MZBsoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2711787727</pqid></control><display><type>article</type><title>Dynamical electromagnetic actuation system for microscale manipulation</title><source>Cambridge University Press Journals Complete</source><creator>Çetin, Levent ; Alasli, Abdulkareem ; Akçura, Nail ; Kahveci, Aytaç ; Can, Fatih Cemal ; Tamer, Özgür</creator><creatorcontrib>Çetin, Levent ; Alasli, Abdulkareem ; Akçura, Nail ; Kahveci, Aytaç ; Can, Fatih Cemal ; Tamer, Özgür</creatorcontrib><description>Electromagnetic actuation systems (EMA) have excelled themselves in microscale manipulation. Yet, the fastened structure of the current systems tethers the controlled workspace. In this paper, a new electromagnetic actuation principle is investigated. The actuator structure consists of a pair of coaxially movable electromagnets integrated to a robotic manipulator. The pair induces a coaxial homogeneous magnetic field or gradient to control the magnitude of the magnetic torque or force by changing the distance between the electromagnets asymmetrically. The robotic manipulator, on the other hand, transports the pair at five degrees of freedom to manipulate a microrobot in 3D space by closed-loop control with integrated vision feedback system. Numerical analyses are performed to investigate the induced electromagnetic field at the symmetrical/asymmetrical configuration of the coaxial pair. Accordingly, a correlation between the magnitude of the magnetic force and the asymmetric distance is obtained for flexible force control. A proof of concept prototype is constructed to validate the proposed actuation principle and evaluate its performance experimentally. The experimental results verify the numerical analysis and show the system applicability of inducing controlled forces on a micro-object in 2D and 3D workspaces at a velocity range of 65 to 157
$\mu$
m/s. Moreover, micromanipulation on a helical route is also demonstrated with an absolute error mean from the reference path of 191
$\mu$
m.</description><identifier>ISSN: 0263-5747</identifier><identifier>EISSN: 1469-8668</identifier><identifier>DOI: 10.1017/S0263574722000418</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Actuation ; Actuators ; Asymmetry ; Design ; Electromagnetic fields ; Feedback control ; Magnetic fields ; Magnetism ; Manipulators ; Micromanipulation ; Microrobots ; Numerical analysis ; Principles ; Robot arms ; Robotics</subject><ispartof>Robotica, 2022-10, Vol.40 (10), p.3586-3603</ispartof><rights>The Author(s), 2022. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c247t-3b2f4b854f900c481abee5439c1773fcddeb43029ff8e35e18f70fc9966897513</citedby><cites>FETCH-LOGICAL-c247t-3b2f4b854f900c481abee5439c1773fcddeb43029ff8e35e18f70fc9966897513</cites><orcidid>0000-0002-7041-0529 ; 0000-0002-1681-0492</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0263574722000418/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27903,27904,55606</link.rule.ids></links><search><creatorcontrib>Çetin, Levent</creatorcontrib><creatorcontrib>Alasli, Abdulkareem</creatorcontrib><creatorcontrib>Akçura, Nail</creatorcontrib><creatorcontrib>Kahveci, Aytaç</creatorcontrib><creatorcontrib>Can, Fatih Cemal</creatorcontrib><creatorcontrib>Tamer, Özgür</creatorcontrib><title>Dynamical electromagnetic actuation system for microscale manipulation</title><title>Robotica</title><addtitle>Robotica</addtitle><description>Electromagnetic actuation systems (EMA) have excelled themselves in microscale manipulation. Yet, the fastened structure of the current systems tethers the controlled workspace. In this paper, a new electromagnetic actuation principle is investigated. The actuator structure consists of a pair of coaxially movable electromagnets integrated to a robotic manipulator. The pair induces a coaxial homogeneous magnetic field or gradient to control the magnitude of the magnetic torque or force by changing the distance between the electromagnets asymmetrically. The robotic manipulator, on the other hand, transports the pair at five degrees of freedom to manipulate a microrobot in 3D space by closed-loop control with integrated vision feedback system. Numerical analyses are performed to investigate the induced electromagnetic field at the symmetrical/asymmetrical configuration of the coaxial pair. Accordingly, a correlation between the magnitude of the magnetic force and the asymmetric distance is obtained for flexible force control. A proof of concept prototype is constructed to validate the proposed actuation principle and evaluate its performance experimentally. The experimental results verify the numerical analysis and show the system applicability of inducing controlled forces on a micro-object in 2D and 3D workspaces at a velocity range of 65 to 157
$\mu$
m/s. Moreover, micromanipulation on a helical route is also demonstrated with an absolute error mean from the reference path of 191
$\mu$
m.</description><subject>Actuation</subject><subject>Actuators</subject><subject>Asymmetry</subject><subject>Design</subject><subject>Electromagnetic fields</subject><subject>Feedback control</subject><subject>Magnetic fields</subject><subject>Magnetism</subject><subject>Manipulators</subject><subject>Micromanipulation</subject><subject>Microrobots</subject><subject>Numerical analysis</subject><subject>Principles</subject><subject>Robot arms</subject><subject>Robotics</subject><issn>0263-5747</issn><issn>1469-8668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kD9PwzAQxS0EEqXwAdgiMQd8tpNzRlRoQarEAMyR456rVPlTbGfotyehlRgQ0w3v997dPcZugd8DB3x45yKXGSoUgnOuQJ-xGai8SHWe63M2m-R00i_ZVQg7zkGCwhlbPh0609bWNAk1ZKPvW7PtKNY2MTYOJtZ9l4RDiNQmrvfJiPo-jDglrenq_dD8INfswpkm0M1pztnn8vlj8ZKu31avi8d1aoXCmMpKOFXpTLmCc6s0mIooU7KwgCid3WyoUpKLwjlNMiPQDrmzRTE-UWAGcs7ujrl7338NFGK56wffjStLgQCoEQWOFByp6dbgyZV7X7fGH0rg5VRX-aeu0SNPHtNWvt5s6Tf6f9c3MZBsoQ</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Çetin, Levent</creator><creator>Alasli, Abdulkareem</creator><creator>Akçura, Nail</creator><creator>Kahveci, Aytaç</creator><creator>Can, Fatih Cemal</creator><creator>Tamer, Özgür</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-7041-0529</orcidid><orcidid>https://orcid.org/0000-0002-1681-0492</orcidid></search><sort><creationdate>202210</creationdate><title>Dynamical electromagnetic actuation system for microscale manipulation</title><author>Çetin, Levent ; Alasli, Abdulkareem ; Akçura, Nail ; Kahveci, Aytaç ; Can, Fatih Cemal ; Tamer, Özgür</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-3b2f4b854f900c481abee5439c1773fcddeb43029ff8e35e18f70fc9966897513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Actuation</topic><topic>Actuators</topic><topic>Asymmetry</topic><topic>Design</topic><topic>Electromagnetic fields</topic><topic>Feedback control</topic><topic>Magnetic fields</topic><topic>Magnetism</topic><topic>Manipulators</topic><topic>Micromanipulation</topic><topic>Microrobots</topic><topic>Numerical analysis</topic><topic>Principles</topic><topic>Robot arms</topic><topic>Robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Çetin, Levent</creatorcontrib><creatorcontrib>Alasli, Abdulkareem</creatorcontrib><creatorcontrib>Akçura, Nail</creatorcontrib><creatorcontrib>Kahveci, Aytaç</creatorcontrib><creatorcontrib>Can, Fatih Cemal</creatorcontrib><creatorcontrib>Tamer, Özgür</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Robotica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Çetin, Levent</au><au>Alasli, Abdulkareem</au><au>Akçura, Nail</au><au>Kahveci, Aytaç</au><au>Can, Fatih Cemal</au><au>Tamer, Özgür</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamical electromagnetic actuation system for microscale manipulation</atitle><jtitle>Robotica</jtitle><addtitle>Robotica</addtitle><date>2022-10</date><risdate>2022</risdate><volume>40</volume><issue>10</issue><spage>3586</spage><epage>3603</epage><pages>3586-3603</pages><issn>0263-5747</issn><eissn>1469-8668</eissn><abstract>Electromagnetic actuation systems (EMA) have excelled themselves in microscale manipulation. Yet, the fastened structure of the current systems tethers the controlled workspace. In this paper, a new electromagnetic actuation principle is investigated. The actuator structure consists of a pair of coaxially movable electromagnets integrated to a robotic manipulator. The pair induces a coaxial homogeneous magnetic field or gradient to control the magnitude of the magnetic torque or force by changing the distance between the electromagnets asymmetrically. The robotic manipulator, on the other hand, transports the pair at five degrees of freedom to manipulate a microrobot in 3D space by closed-loop control with integrated vision feedback system. Numerical analyses are performed to investigate the induced electromagnetic field at the symmetrical/asymmetrical configuration of the coaxial pair. Accordingly, a correlation between the magnitude of the magnetic force and the asymmetric distance is obtained for flexible force control. A proof of concept prototype is constructed to validate the proposed actuation principle and evaluate its performance experimentally. The experimental results verify the numerical analysis and show the system applicability of inducing controlled forces on a micro-object in 2D and 3D workspaces at a velocity range of 65 to 157
$\mu$
m/s. Moreover, micromanipulation on a helical route is also demonstrated with an absolute error mean from the reference path of 191
$\mu$
m.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0263574722000418</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-7041-0529</orcidid><orcidid>https://orcid.org/0000-0002-1681-0492</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0263-5747 |
ispartof | Robotica, 2022-10, Vol.40 (10), p.3586-3603 |
issn | 0263-5747 1469-8668 |
language | eng |
recordid | cdi_proquest_journals_2711787727 |
source | Cambridge University Press Journals Complete |
subjects | Actuation Actuators Asymmetry Design Electromagnetic fields Feedback control Magnetic fields Magnetism Manipulators Micromanipulation Microrobots Numerical analysis Principles Robot arms Robotics |
title | Dynamical electromagnetic actuation system for microscale manipulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T08%3A22%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamical%20electromagnetic%20actuation%20system%20for%20microscale%20manipulation&rft.jtitle=Robotica&rft.au=%C3%87etin,%20Levent&rft.date=2022-10&rft.volume=40&rft.issue=10&rft.spage=3586&rft.epage=3603&rft.pages=3586-3603&rft.issn=0263-5747&rft.eissn=1469-8668&rft_id=info:doi/10.1017/S0263574722000418&rft_dat=%3Cproquest_cross%3E2711787727%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2711787727&rft_id=info:pmid/&rft_cupid=10_1017_S0263574722000418&rfr_iscdi=true |