Holographic dynamics simulations with a trapped-ion quantum computer

Quantum computers promise to efficiently simulate quantum dynamics, a classically intractable task central to fields ranging from chemistry to high-energy physics. Yet, quantum computational advantage has only been demonstrated for artificial tasks such as random circuit sampling, and hardware limit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2022-09, Vol.18 (9), p.1074-1079
Hauptverfasser: Chertkov, Eli, Bohnet, Justin, Francois, David, Gaebler, John, Gresh, Dan, Hankin, Aaron, Lee, Kenny, Hayes, David, Neyenhuis, Brian, Stutz, Russell, Potter, Andrew C., Foss-Feig, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1079
container_issue 9
container_start_page 1074
container_title Nature physics
container_volume 18
creator Chertkov, Eli
Bohnet, Justin
Francois, David
Gaebler, John
Gresh, Dan
Hankin, Aaron
Lee, Kenny
Hayes, David
Neyenhuis, Brian
Stutz, Russell
Potter, Andrew C.
Foss-Feig, Michael
description Quantum computers promise to efficiently simulate quantum dynamics, a classically intractable task central to fields ranging from chemistry to high-energy physics. Yet, quantum computational advantage has only been demonstrated for artificial tasks such as random circuit sampling, and hardware limitations and noise have limited experiments to qualitative studies of small-scale systems. Quantum processors capable of high-fidelity measurements and qubit reuse enable a recently proposed holographic technique that employs quantum tensor-network states, a class of states that efficiently compress quantum data, to simulate the evolution of infinitely long, entangled initial states using a small number of qubits. Here we benchmark this holographic technique in a trapped-ion quantum processor using 11 qubits to simulate the dynamics of an infinite entangled state. We observe the hallmarks of quantum chaos and light-cone propagation of correlations, and find excellent quantitative agreement with theoretical predictions for the infinite-size limit of the implemented model with minimal post-processing or error mitigation. These results show that quantum tensor-network methods, paired with state-of-the-art quantum processor capabilities, offer a viable route to practical quantum computational advantage on problems of direct interest to science and technology in the near term. The simulation of quantum dynamics is a challenging task to solve with classical resources. An experiment with a trapped-ion quantum processor now shows the efficient simulation of the evolution of large-scale many-body quantum systems.
doi_str_mv 10.1038/s41567-022-01689-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2711641148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2711641148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4784b3adb54fed865ddead6fbdb6abb1c627aa535c5bec96690cf636a4cb30503</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gKuA62jS3NqljJcRBtzoOuTWmQ5t00laZN7eaEV3rs7h8P3_gQ-Aa4JvCablXWKEC4lwUSBMRFkheQIWRDKOClaS099d0nNwkdIeY1YIQhfgYR3asI162DUWumOvu8YmmJpuavXYhD7Bj2bcQQ3HzAzeoXyDh0n349RBG7phGn28BGe1bpO_-plL8P70-LZao83r88vqfoMsJdWImCyZodoZzmrvSsGd89qJ2jgjtDHEikJqzSm33HhbCVFhWwsqNLOGYo7pEtzMvUMMh8mnUe3DFPv8UhWSEMEIYWWmipmyMaQUfa2G2HQ6HhXB6suWmm2pbEt921Iyh-gcShnutz7-Vf-T-gTAn26u</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2711641148</pqid></control><display><type>article</type><title>Holographic dynamics simulations with a trapped-ion quantum computer</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Chertkov, Eli ; Bohnet, Justin ; Francois, David ; Gaebler, John ; Gresh, Dan ; Hankin, Aaron ; Lee, Kenny ; Hayes, David ; Neyenhuis, Brian ; Stutz, Russell ; Potter, Andrew C. ; Foss-Feig, Michael</creator><creatorcontrib>Chertkov, Eli ; Bohnet, Justin ; Francois, David ; Gaebler, John ; Gresh, Dan ; Hankin, Aaron ; Lee, Kenny ; Hayes, David ; Neyenhuis, Brian ; Stutz, Russell ; Potter, Andrew C. ; Foss-Feig, Michael</creatorcontrib><description>Quantum computers promise to efficiently simulate quantum dynamics, a classically intractable task central to fields ranging from chemistry to high-energy physics. Yet, quantum computational advantage has only been demonstrated for artificial tasks such as random circuit sampling, and hardware limitations and noise have limited experiments to qualitative studies of small-scale systems. Quantum processors capable of high-fidelity measurements and qubit reuse enable a recently proposed holographic technique that employs quantum tensor-network states, a class of states that efficiently compress quantum data, to simulate the evolution of infinitely long, entangled initial states using a small number of qubits. Here we benchmark this holographic technique in a trapped-ion quantum processor using 11 qubits to simulate the dynamics of an infinite entangled state. We observe the hallmarks of quantum chaos and light-cone propagation of correlations, and find excellent quantitative agreement with theoretical predictions for the infinite-size limit of the implemented model with minimal post-processing or error mitigation. These results show that quantum tensor-network methods, paired with state-of-the-art quantum processor capabilities, offer a viable route to practical quantum computational advantage on problems of direct interest to science and technology in the near term. The simulation of quantum dynamics is a challenging task to solve with classical resources. An experiment with a trapped-ion quantum processor now shows the efficient simulation of the evolution of large-scale many-body quantum systems.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-022-01689-7</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/483/3926 ; 639/766/483/481 ; Atomic ; Circuits ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Dynamics ; Entangled states ; Evolution ; Holography ; Mathematical analysis ; Mathematical and Computational Physics ; Microprocessors ; Molecular ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Qualitative research ; Quantum computers ; Quantum entanglement ; Quantum theory ; Qubits (quantum computing) ; Simulation ; Tensors ; Theoretical</subject><ispartof>Nature physics, 2022-09, Vol.18 (9), p.1074-1079</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4784b3adb54fed865ddead6fbdb6abb1c627aa535c5bec96690cf636a4cb30503</citedby><cites>FETCH-LOGICAL-c319t-4784b3adb54fed865ddead6fbdb6abb1c627aa535c5bec96690cf636a4cb30503</cites><orcidid>0000-0002-5957-1356</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41567-022-01689-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41567-022-01689-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Chertkov, Eli</creatorcontrib><creatorcontrib>Bohnet, Justin</creatorcontrib><creatorcontrib>Francois, David</creatorcontrib><creatorcontrib>Gaebler, John</creatorcontrib><creatorcontrib>Gresh, Dan</creatorcontrib><creatorcontrib>Hankin, Aaron</creatorcontrib><creatorcontrib>Lee, Kenny</creatorcontrib><creatorcontrib>Hayes, David</creatorcontrib><creatorcontrib>Neyenhuis, Brian</creatorcontrib><creatorcontrib>Stutz, Russell</creatorcontrib><creatorcontrib>Potter, Andrew C.</creatorcontrib><creatorcontrib>Foss-Feig, Michael</creatorcontrib><title>Holographic dynamics simulations with a trapped-ion quantum computer</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>Quantum computers promise to efficiently simulate quantum dynamics, a classically intractable task central to fields ranging from chemistry to high-energy physics. Yet, quantum computational advantage has only been demonstrated for artificial tasks such as random circuit sampling, and hardware limitations and noise have limited experiments to qualitative studies of small-scale systems. Quantum processors capable of high-fidelity measurements and qubit reuse enable a recently proposed holographic technique that employs quantum tensor-network states, a class of states that efficiently compress quantum data, to simulate the evolution of infinitely long, entangled initial states using a small number of qubits. Here we benchmark this holographic technique in a trapped-ion quantum processor using 11 qubits to simulate the dynamics of an infinite entangled state. We observe the hallmarks of quantum chaos and light-cone propagation of correlations, and find excellent quantitative agreement with theoretical predictions for the infinite-size limit of the implemented model with minimal post-processing or error mitigation. These results show that quantum tensor-network methods, paired with state-of-the-art quantum processor capabilities, offer a viable route to practical quantum computational advantage on problems of direct interest to science and technology in the near term. The simulation of quantum dynamics is a challenging task to solve with classical resources. An experiment with a trapped-ion quantum processor now shows the efficient simulation of the evolution of large-scale many-body quantum systems.</description><subject>639/766/483/3926</subject><subject>639/766/483/481</subject><subject>Atomic</subject><subject>Circuits</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Dynamics</subject><subject>Entangled states</subject><subject>Evolution</subject><subject>Holography</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Microprocessors</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Qualitative research</subject><subject>Quantum computers</subject><subject>Quantum entanglement</subject><subject>Quantum theory</subject><subject>Qubits (quantum computing)</subject><subject>Simulation</subject><subject>Tensors</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kMtKxDAUhoMoOI6-gKuA62jS3NqljJcRBtzoOuTWmQ5t00laZN7eaEV3rs7h8P3_gQ-Aa4JvCablXWKEC4lwUSBMRFkheQIWRDKOClaS099d0nNwkdIeY1YIQhfgYR3asI162DUWumOvu8YmmJpuavXYhD7Bj2bcQQ3HzAzeoXyDh0n349RBG7phGn28BGe1bpO_-plL8P70-LZao83r88vqfoMsJdWImCyZodoZzmrvSsGd89qJ2jgjtDHEikJqzSm33HhbCVFhWwsqNLOGYo7pEtzMvUMMh8mnUe3DFPv8UhWSEMEIYWWmipmyMaQUfa2G2HQ6HhXB6suWmm2pbEt921Iyh-gcShnutz7-Vf-T-gTAn26u</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Chertkov, Eli</creator><creator>Bohnet, Justin</creator><creator>Francois, David</creator><creator>Gaebler, John</creator><creator>Gresh, Dan</creator><creator>Hankin, Aaron</creator><creator>Lee, Kenny</creator><creator>Hayes, David</creator><creator>Neyenhuis, Brian</creator><creator>Stutz, Russell</creator><creator>Potter, Andrew C.</creator><creator>Foss-Feig, Michael</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-5957-1356</orcidid></search><sort><creationdate>20220901</creationdate><title>Holographic dynamics simulations with a trapped-ion quantum computer</title><author>Chertkov, Eli ; Bohnet, Justin ; Francois, David ; Gaebler, John ; Gresh, Dan ; Hankin, Aaron ; Lee, Kenny ; Hayes, David ; Neyenhuis, Brian ; Stutz, Russell ; Potter, Andrew C. ; Foss-Feig, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4784b3adb54fed865ddead6fbdb6abb1c627aa535c5bec96690cf636a4cb30503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>639/766/483/3926</topic><topic>639/766/483/481</topic><topic>Atomic</topic><topic>Circuits</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Dynamics</topic><topic>Entangled states</topic><topic>Evolution</topic><topic>Holography</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Microprocessors</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Qualitative research</topic><topic>Quantum computers</topic><topic>Quantum entanglement</topic><topic>Quantum theory</topic><topic>Qubits (quantum computing)</topic><topic>Simulation</topic><topic>Tensors</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chertkov, Eli</creatorcontrib><creatorcontrib>Bohnet, Justin</creatorcontrib><creatorcontrib>Francois, David</creatorcontrib><creatorcontrib>Gaebler, John</creatorcontrib><creatorcontrib>Gresh, Dan</creatorcontrib><creatorcontrib>Hankin, Aaron</creatorcontrib><creatorcontrib>Lee, Kenny</creatorcontrib><creatorcontrib>Hayes, David</creatorcontrib><creatorcontrib>Neyenhuis, Brian</creatorcontrib><creatorcontrib>Stutz, Russell</creatorcontrib><creatorcontrib>Potter, Andrew C.</creatorcontrib><creatorcontrib>Foss-Feig, Michael</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chertkov, Eli</au><au>Bohnet, Justin</au><au>Francois, David</au><au>Gaebler, John</au><au>Gresh, Dan</au><au>Hankin, Aaron</au><au>Lee, Kenny</au><au>Hayes, David</au><au>Neyenhuis, Brian</au><au>Stutz, Russell</au><au>Potter, Andrew C.</au><au>Foss-Feig, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Holographic dynamics simulations with a trapped-ion quantum computer</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>18</volume><issue>9</issue><spage>1074</spage><epage>1079</epage><pages>1074-1079</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Quantum computers promise to efficiently simulate quantum dynamics, a classically intractable task central to fields ranging from chemistry to high-energy physics. Yet, quantum computational advantage has only been demonstrated for artificial tasks such as random circuit sampling, and hardware limitations and noise have limited experiments to qualitative studies of small-scale systems. Quantum processors capable of high-fidelity measurements and qubit reuse enable a recently proposed holographic technique that employs quantum tensor-network states, a class of states that efficiently compress quantum data, to simulate the evolution of infinitely long, entangled initial states using a small number of qubits. Here we benchmark this holographic technique in a trapped-ion quantum processor using 11 qubits to simulate the dynamics of an infinite entangled state. We observe the hallmarks of quantum chaos and light-cone propagation of correlations, and find excellent quantitative agreement with theoretical predictions for the infinite-size limit of the implemented model with minimal post-processing or error mitigation. These results show that quantum tensor-network methods, paired with state-of-the-art quantum processor capabilities, offer a viable route to practical quantum computational advantage on problems of direct interest to science and technology in the near term. The simulation of quantum dynamics is a challenging task to solve with classical resources. An experiment with a trapped-ion quantum processor now shows the efficient simulation of the evolution of large-scale many-body quantum systems.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-022-01689-7</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-5957-1356</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2022-09, Vol.18 (9), p.1074-1079
issn 1745-2473
1745-2481
language eng
recordid cdi_proquest_journals_2711641148
source Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 639/766/483/3926
639/766/483/481
Atomic
Circuits
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Dynamics
Entangled states
Evolution
Holography
Mathematical analysis
Mathematical and Computational Physics
Microprocessors
Molecular
Optical and Plasma Physics
Physics
Physics and Astronomy
Qualitative research
Quantum computers
Quantum entanglement
Quantum theory
Qubits (quantum computing)
Simulation
Tensors
Theoretical
title Holographic dynamics simulations with a trapped-ion quantum computer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A47%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Holographic%20dynamics%20simulations%20with%20a%20trapped-ion%20quantum%20computer&rft.jtitle=Nature%20physics&rft.au=Chertkov,%20Eli&rft.date=2022-09-01&rft.volume=18&rft.issue=9&rft.spage=1074&rft.epage=1079&rft.pages=1074-1079&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-022-01689-7&rft_dat=%3Cproquest_cross%3E2711641148%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2711641148&rft_id=info:pmid/&rfr_iscdi=true