Observation of the Hanbury Brown–Twiss effect with ultracold molecules

Measuring the statistical correlations of individual quantum objects provides an excellent way to study complex quantum systems. Ultracold molecules represent a powerful platform for quantum simulation 1 and quantum computation 2 due to their rich and controllable internal degrees of freedom. Howeve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2022-09, Vol.18 (9), p.1062-1066
Hauptverfasser: Rosenberg, Jason S., Christakis, Lysander, Guardado-Sanchez, Elmer, Yan, Zoe Z., Bakr, Waseem S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1066
container_issue 9
container_start_page 1062
container_title Nature physics
container_volume 18
creator Rosenberg, Jason S.
Christakis, Lysander
Guardado-Sanchez, Elmer
Yan, Zoe Z.
Bakr, Waseem S.
description Measuring the statistical correlations of individual quantum objects provides an excellent way to study complex quantum systems. Ultracold molecules represent a powerful platform for quantum simulation 1 and quantum computation 2 due to their rich and controllable internal degrees of freedom. However, the detection of correlations between single molecules in an ultracold gas has yet to be demonstrated. Here we observe the Hanbury Brown–Twiss effect—the emergence of bunching correlations of indistinguishable particles collected by separate detectors—in a gas of bosonic 23 Na 87 Rb Feshbach molecules, enabled by the realization of a molecular quantum gas microscope. We detect the characteristic bunching correlations in the density fluctuations of a two-dimensional molecular gas released from and subsequently recaptured in an optical lattice. The quantum gas microscope allows us to extract the positions of individual molecules with single-site resolution. As a result, we obtain a two-molecule interference pattern with high visibility. Although these measured correlations purely arise from the quantum statistics of the molecules, the demonstrated imaging capabilities open the way for site-resolved studies of interacting molecular gases in optical lattices. The study of statistical correlations is central to the description of complex quantum objects. Measurements of density correlation functions of ultracold molecules are now possible through the realization of a molecular quantum gas microscope.
doi_str_mv 10.1038/s41567-022-01695-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2711641146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2711641146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2c69f308917cfc50d73eaed7e88296a41fd064ba35ae2d273cb6fade654206c83</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhS0EEuXnBZgsMQd8bceOR6iAIlXqUmbLcWyaKo2LnVB14x14Q56EQBBsTPcM5ztX-hC6AHIFhBXXiUMuZEYozQgIlWfqAE1A8jyjvIDD3yzZMTpJaU0IpwLYBM0WZXLx1XR1aHHwuFs5PDNt2cc9vo1h1368vS93dUrYee9sh3d1t8J900VjQ1PhTWic7RuXztCRN01y5z_3FD3d3y2ns2y-eHic3swzy0B1GbVCeUYKBdJ6m5NKMmdcJV1RUCUMB18RwUvDcuNoRSWzpfCmciLnlAhbsFN0Oe5uY3jpXer0OvSxHV5qKgEEB-BiaNGxZWNIKTqvt7HemLjXQPSXMT0a04Mx_W1MqwFiI5SGcvvs4t_0P9QnoBtvwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2711641146</pqid></control><display><type>article</type><title>Observation of the Hanbury Brown–Twiss effect with ultracold molecules</title><source>Springer Nature - Connect here FIRST to enable access</source><source>SpringerLink Journals - AutoHoldings</source><creator>Rosenberg, Jason S. ; Christakis, Lysander ; Guardado-Sanchez, Elmer ; Yan, Zoe Z. ; Bakr, Waseem S.</creator><creatorcontrib>Rosenberg, Jason S. ; Christakis, Lysander ; Guardado-Sanchez, Elmer ; Yan, Zoe Z. ; Bakr, Waseem S.</creatorcontrib><description>Measuring the statistical correlations of individual quantum objects provides an excellent way to study complex quantum systems. Ultracold molecules represent a powerful platform for quantum simulation 1 and quantum computation 2 due to their rich and controllable internal degrees of freedom. However, the detection of correlations between single molecules in an ultracold gas has yet to be demonstrated. Here we observe the Hanbury Brown–Twiss effect—the emergence of bunching correlations of indistinguishable particles collected by separate detectors—in a gas of bosonic 23 Na 87 Rb Feshbach molecules, enabled by the realization of a molecular quantum gas microscope. We detect the characteristic bunching correlations in the density fluctuations of a two-dimensional molecular gas released from and subsequently recaptured in an optical lattice. The quantum gas microscope allows us to extract the positions of individual molecules with single-site resolution. As a result, we obtain a two-molecule interference pattern with high visibility. Although these measured correlations purely arise from the quantum statistics of the molecules, the demonstrated imaging capabilities open the way for site-resolved studies of interacting molecular gases in optical lattices. The study of statistical correlations is central to the description of complex quantum objects. Measurements of density correlation functions of ultracold molecules are now possible through the realization of a molecular quantum gas microscope.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-022-01695-9</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/36/1125 ; 639/766/483/3926 ; Atomic ; Bunching ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Density ; Gases ; Letter ; Mathematical and Computational Physics ; Molecular ; Molecular gases ; Optical and Plasma Physics ; Optical lattices ; Physics ; Physics and Astronomy ; Quantum statistics ; Theoretical ; Visibility</subject><ispartof>Nature physics, 2022-09, Vol.18 (9), p.1062-1066</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2c69f308917cfc50d73eaed7e88296a41fd064ba35ae2d273cb6fade654206c83</citedby><cites>FETCH-LOGICAL-c319t-2c69f308917cfc50d73eaed7e88296a41fd064ba35ae2d273cb6fade654206c83</cites><orcidid>0000-0003-1901-8262 ; 0000-0003-3410-5196 ; 0000-0003-3784-6440</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41567-022-01695-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41567-022-01695-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Rosenberg, Jason S.</creatorcontrib><creatorcontrib>Christakis, Lysander</creatorcontrib><creatorcontrib>Guardado-Sanchez, Elmer</creatorcontrib><creatorcontrib>Yan, Zoe Z.</creatorcontrib><creatorcontrib>Bakr, Waseem S.</creatorcontrib><title>Observation of the Hanbury Brown–Twiss effect with ultracold molecules</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>Measuring the statistical correlations of individual quantum objects provides an excellent way to study complex quantum systems. Ultracold molecules represent a powerful platform for quantum simulation 1 and quantum computation 2 due to their rich and controllable internal degrees of freedom. However, the detection of correlations between single molecules in an ultracold gas has yet to be demonstrated. Here we observe the Hanbury Brown–Twiss effect—the emergence of bunching correlations of indistinguishable particles collected by separate detectors—in a gas of bosonic 23 Na 87 Rb Feshbach molecules, enabled by the realization of a molecular quantum gas microscope. We detect the characteristic bunching correlations in the density fluctuations of a two-dimensional molecular gas released from and subsequently recaptured in an optical lattice. The quantum gas microscope allows us to extract the positions of individual molecules with single-site resolution. As a result, we obtain a two-molecule interference pattern with high visibility. Although these measured correlations purely arise from the quantum statistics of the molecules, the demonstrated imaging capabilities open the way for site-resolved studies of interacting molecular gases in optical lattices. The study of statistical correlations is central to the description of complex quantum objects. Measurements of density correlation functions of ultracold molecules are now possible through the realization of a molecular quantum gas microscope.</description><subject>639/766/36/1125</subject><subject>639/766/483/3926</subject><subject>Atomic</subject><subject>Bunching</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Density</subject><subject>Gases</subject><subject>Letter</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Molecular gases</subject><subject>Optical and Plasma Physics</subject><subject>Optical lattices</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum statistics</subject><subject>Theoretical</subject><subject>Visibility</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kL1OwzAUhS0EEuXnBZgsMQd8bceOR6iAIlXqUmbLcWyaKo2LnVB14x14Q56EQBBsTPcM5ztX-hC6AHIFhBXXiUMuZEYozQgIlWfqAE1A8jyjvIDD3yzZMTpJaU0IpwLYBM0WZXLx1XR1aHHwuFs5PDNt2cc9vo1h1368vS93dUrYee9sh3d1t8J900VjQ1PhTWic7RuXztCRN01y5z_3FD3d3y2ns2y-eHic3swzy0B1GbVCeUYKBdJ6m5NKMmdcJV1RUCUMB18RwUvDcuNoRSWzpfCmciLnlAhbsFN0Oe5uY3jpXer0OvSxHV5qKgEEB-BiaNGxZWNIKTqvt7HemLjXQPSXMT0a04Mx_W1MqwFiI5SGcvvs4t_0P9QnoBtvwQ</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Rosenberg, Jason S.</creator><creator>Christakis, Lysander</creator><creator>Guardado-Sanchez, Elmer</creator><creator>Yan, Zoe Z.</creator><creator>Bakr, Waseem S.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-1901-8262</orcidid><orcidid>https://orcid.org/0000-0003-3410-5196</orcidid><orcidid>https://orcid.org/0000-0003-3784-6440</orcidid></search><sort><creationdate>20220901</creationdate><title>Observation of the Hanbury Brown–Twiss effect with ultracold molecules</title><author>Rosenberg, Jason S. ; Christakis, Lysander ; Guardado-Sanchez, Elmer ; Yan, Zoe Z. ; Bakr, Waseem S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2c69f308917cfc50d73eaed7e88296a41fd064ba35ae2d273cb6fade654206c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>639/766/36/1125</topic><topic>639/766/483/3926</topic><topic>Atomic</topic><topic>Bunching</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Density</topic><topic>Gases</topic><topic>Letter</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Molecular gases</topic><topic>Optical and Plasma Physics</topic><topic>Optical lattices</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum statistics</topic><topic>Theoretical</topic><topic>Visibility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosenberg, Jason S.</creatorcontrib><creatorcontrib>Christakis, Lysander</creatorcontrib><creatorcontrib>Guardado-Sanchez, Elmer</creatorcontrib><creatorcontrib>Yan, Zoe Z.</creatorcontrib><creatorcontrib>Bakr, Waseem S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosenberg, Jason S.</au><au>Christakis, Lysander</au><au>Guardado-Sanchez, Elmer</au><au>Yan, Zoe Z.</au><au>Bakr, Waseem S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observation of the Hanbury Brown–Twiss effect with ultracold molecules</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>18</volume><issue>9</issue><spage>1062</spage><epage>1066</epage><pages>1062-1066</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Measuring the statistical correlations of individual quantum objects provides an excellent way to study complex quantum systems. Ultracold molecules represent a powerful platform for quantum simulation 1 and quantum computation 2 due to their rich and controllable internal degrees of freedom. However, the detection of correlations between single molecules in an ultracold gas has yet to be demonstrated. Here we observe the Hanbury Brown–Twiss effect—the emergence of bunching correlations of indistinguishable particles collected by separate detectors—in a gas of bosonic 23 Na 87 Rb Feshbach molecules, enabled by the realization of a molecular quantum gas microscope. We detect the characteristic bunching correlations in the density fluctuations of a two-dimensional molecular gas released from and subsequently recaptured in an optical lattice. The quantum gas microscope allows us to extract the positions of individual molecules with single-site resolution. As a result, we obtain a two-molecule interference pattern with high visibility. Although these measured correlations purely arise from the quantum statistics of the molecules, the demonstrated imaging capabilities open the way for site-resolved studies of interacting molecular gases in optical lattices. The study of statistical correlations is central to the description of complex quantum objects. Measurements of density correlation functions of ultracold molecules are now possible through the realization of a molecular quantum gas microscope.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-022-01695-9</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-1901-8262</orcidid><orcidid>https://orcid.org/0000-0003-3410-5196</orcidid><orcidid>https://orcid.org/0000-0003-3784-6440</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2022-09, Vol.18 (9), p.1062-1066
issn 1745-2473
1745-2481
language eng
recordid cdi_proquest_journals_2711641146
source Springer Nature - Connect here FIRST to enable access; SpringerLink Journals - AutoHoldings
subjects 639/766/36/1125
639/766/483/3926
Atomic
Bunching
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Density
Gases
Letter
Mathematical and Computational Physics
Molecular
Molecular gases
Optical and Plasma Physics
Optical lattices
Physics
Physics and Astronomy
Quantum statistics
Theoretical
Visibility
title Observation of the Hanbury Brown–Twiss effect with ultracold molecules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A43%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observation%20of%20the%20Hanbury%20Brown%E2%80%93Twiss%20effect%20with%20ultracold%20molecules&rft.jtitle=Nature%20physics&rft.au=Rosenberg,%20Jason%20S.&rft.date=2022-09-01&rft.volume=18&rft.issue=9&rft.spage=1062&rft.epage=1066&rft.pages=1062-1066&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-022-01695-9&rft_dat=%3Cproquest_cross%3E2711641146%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2711641146&rft_id=info:pmid/&rfr_iscdi=true