Observation of the Hanbury Brown–Twiss effect with ultracold molecules
Measuring the statistical correlations of individual quantum objects provides an excellent way to study complex quantum systems. Ultracold molecules represent a powerful platform for quantum simulation 1 and quantum computation 2 due to their rich and controllable internal degrees of freedom. Howeve...
Gespeichert in:
Veröffentlicht in: | Nature physics 2022-09, Vol.18 (9), p.1062-1066 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1066 |
---|---|
container_issue | 9 |
container_start_page | 1062 |
container_title | Nature physics |
container_volume | 18 |
creator | Rosenberg, Jason S. Christakis, Lysander Guardado-Sanchez, Elmer Yan, Zoe Z. Bakr, Waseem S. |
description | Measuring the statistical correlations of individual quantum objects provides an excellent way to study complex quantum systems. Ultracold molecules represent a powerful platform for quantum simulation
1
and quantum computation
2
due to their rich and controllable internal degrees of freedom. However, the detection of correlations between single molecules in an ultracold gas has yet to be demonstrated. Here we observe the Hanbury Brown–Twiss effect—the emergence of bunching correlations of indistinguishable particles collected by separate detectors—in a gas of bosonic
23
Na
87
Rb Feshbach molecules, enabled by the realization of a molecular quantum gas microscope. We detect the characteristic bunching correlations in the density fluctuations of a two-dimensional molecular gas released from and subsequently recaptured in an optical lattice. The quantum gas microscope allows us to extract the positions of individual molecules with single-site resolution. As a result, we obtain a two-molecule interference pattern with high visibility. Although these measured correlations purely arise from the quantum statistics of the molecules, the demonstrated imaging capabilities open the way for site-resolved studies of interacting molecular gases in optical lattices.
The study of statistical correlations is central to the description of complex quantum objects. Measurements of density correlation functions of ultracold molecules are now possible through the realization of a molecular quantum gas microscope. |
doi_str_mv | 10.1038/s41567-022-01695-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2711641146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2711641146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2c69f308917cfc50d73eaed7e88296a41fd064ba35ae2d273cb6fade654206c83</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhS0EEuXnBZgsMQd8bceOR6iAIlXqUmbLcWyaKo2LnVB14x14Q56EQBBsTPcM5ztX-hC6AHIFhBXXiUMuZEYozQgIlWfqAE1A8jyjvIDD3yzZMTpJaU0IpwLYBM0WZXLx1XR1aHHwuFs5PDNt2cc9vo1h1368vS93dUrYee9sh3d1t8J900VjQ1PhTWic7RuXztCRN01y5z_3FD3d3y2ns2y-eHic3swzy0B1GbVCeUYKBdJ6m5NKMmdcJV1RUCUMB18RwUvDcuNoRSWzpfCmciLnlAhbsFN0Oe5uY3jpXer0OvSxHV5qKgEEB-BiaNGxZWNIKTqvt7HemLjXQPSXMT0a04Mx_W1MqwFiI5SGcvvs4t_0P9QnoBtvwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2711641146</pqid></control><display><type>article</type><title>Observation of the Hanbury Brown–Twiss effect with ultracold molecules</title><source>Springer Nature - Connect here FIRST to enable access</source><source>SpringerLink Journals - AutoHoldings</source><creator>Rosenberg, Jason S. ; Christakis, Lysander ; Guardado-Sanchez, Elmer ; Yan, Zoe Z. ; Bakr, Waseem S.</creator><creatorcontrib>Rosenberg, Jason S. ; Christakis, Lysander ; Guardado-Sanchez, Elmer ; Yan, Zoe Z. ; Bakr, Waseem S.</creatorcontrib><description>Measuring the statistical correlations of individual quantum objects provides an excellent way to study complex quantum systems. Ultracold molecules represent a powerful platform for quantum simulation
1
and quantum computation
2
due to their rich and controllable internal degrees of freedom. However, the detection of correlations between single molecules in an ultracold gas has yet to be demonstrated. Here we observe the Hanbury Brown–Twiss effect—the emergence of bunching correlations of indistinguishable particles collected by separate detectors—in a gas of bosonic
23
Na
87
Rb Feshbach molecules, enabled by the realization of a molecular quantum gas microscope. We detect the characteristic bunching correlations in the density fluctuations of a two-dimensional molecular gas released from and subsequently recaptured in an optical lattice. The quantum gas microscope allows us to extract the positions of individual molecules with single-site resolution. As a result, we obtain a two-molecule interference pattern with high visibility. Although these measured correlations purely arise from the quantum statistics of the molecules, the demonstrated imaging capabilities open the way for site-resolved studies of interacting molecular gases in optical lattices.
The study of statistical correlations is central to the description of complex quantum objects. Measurements of density correlation functions of ultracold molecules are now possible through the realization of a molecular quantum gas microscope.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-022-01695-9</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/36/1125 ; 639/766/483/3926 ; Atomic ; Bunching ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Density ; Gases ; Letter ; Mathematical and Computational Physics ; Molecular ; Molecular gases ; Optical and Plasma Physics ; Optical lattices ; Physics ; Physics and Astronomy ; Quantum statistics ; Theoretical ; Visibility</subject><ispartof>Nature physics, 2022-09, Vol.18 (9), p.1062-1066</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2c69f308917cfc50d73eaed7e88296a41fd064ba35ae2d273cb6fade654206c83</citedby><cites>FETCH-LOGICAL-c319t-2c69f308917cfc50d73eaed7e88296a41fd064ba35ae2d273cb6fade654206c83</cites><orcidid>0000-0003-1901-8262 ; 0000-0003-3410-5196 ; 0000-0003-3784-6440</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41567-022-01695-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41567-022-01695-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Rosenberg, Jason S.</creatorcontrib><creatorcontrib>Christakis, Lysander</creatorcontrib><creatorcontrib>Guardado-Sanchez, Elmer</creatorcontrib><creatorcontrib>Yan, Zoe Z.</creatorcontrib><creatorcontrib>Bakr, Waseem S.</creatorcontrib><title>Observation of the Hanbury Brown–Twiss effect with ultracold molecules</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>Measuring the statistical correlations of individual quantum objects provides an excellent way to study complex quantum systems. Ultracold molecules represent a powerful platform for quantum simulation
1
and quantum computation
2
due to their rich and controllable internal degrees of freedom. However, the detection of correlations between single molecules in an ultracold gas has yet to be demonstrated. Here we observe the Hanbury Brown–Twiss effect—the emergence of bunching correlations of indistinguishable particles collected by separate detectors—in a gas of bosonic
23
Na
87
Rb Feshbach molecules, enabled by the realization of a molecular quantum gas microscope. We detect the characteristic bunching correlations in the density fluctuations of a two-dimensional molecular gas released from and subsequently recaptured in an optical lattice. The quantum gas microscope allows us to extract the positions of individual molecules with single-site resolution. As a result, we obtain a two-molecule interference pattern with high visibility. Although these measured correlations purely arise from the quantum statistics of the molecules, the demonstrated imaging capabilities open the way for site-resolved studies of interacting molecular gases in optical lattices.
The study of statistical correlations is central to the description of complex quantum objects. Measurements of density correlation functions of ultracold molecules are now possible through the realization of a molecular quantum gas microscope.</description><subject>639/766/36/1125</subject><subject>639/766/483/3926</subject><subject>Atomic</subject><subject>Bunching</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Density</subject><subject>Gases</subject><subject>Letter</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Molecular gases</subject><subject>Optical and Plasma Physics</subject><subject>Optical lattices</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum statistics</subject><subject>Theoretical</subject><subject>Visibility</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kL1OwzAUhS0EEuXnBZgsMQd8bceOR6iAIlXqUmbLcWyaKo2LnVB14x14Q56EQBBsTPcM5ztX-hC6AHIFhBXXiUMuZEYozQgIlWfqAE1A8jyjvIDD3yzZMTpJaU0IpwLYBM0WZXLx1XR1aHHwuFs5PDNt2cc9vo1h1368vS93dUrYee9sh3d1t8J900VjQ1PhTWic7RuXztCRN01y5z_3FD3d3y2ns2y-eHic3swzy0B1GbVCeUYKBdJ6m5NKMmdcJV1RUCUMB18RwUvDcuNoRSWzpfCmciLnlAhbsFN0Oe5uY3jpXer0OvSxHV5qKgEEB-BiaNGxZWNIKTqvt7HemLjXQPSXMT0a04Mx_W1MqwFiI5SGcvvs4t_0P9QnoBtvwQ</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Rosenberg, Jason S.</creator><creator>Christakis, Lysander</creator><creator>Guardado-Sanchez, Elmer</creator><creator>Yan, Zoe Z.</creator><creator>Bakr, Waseem S.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-1901-8262</orcidid><orcidid>https://orcid.org/0000-0003-3410-5196</orcidid><orcidid>https://orcid.org/0000-0003-3784-6440</orcidid></search><sort><creationdate>20220901</creationdate><title>Observation of the Hanbury Brown–Twiss effect with ultracold molecules</title><author>Rosenberg, Jason S. ; Christakis, Lysander ; Guardado-Sanchez, Elmer ; Yan, Zoe Z. ; Bakr, Waseem S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2c69f308917cfc50d73eaed7e88296a41fd064ba35ae2d273cb6fade654206c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>639/766/36/1125</topic><topic>639/766/483/3926</topic><topic>Atomic</topic><topic>Bunching</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Density</topic><topic>Gases</topic><topic>Letter</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Molecular gases</topic><topic>Optical and Plasma Physics</topic><topic>Optical lattices</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum statistics</topic><topic>Theoretical</topic><topic>Visibility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosenberg, Jason S.</creatorcontrib><creatorcontrib>Christakis, Lysander</creatorcontrib><creatorcontrib>Guardado-Sanchez, Elmer</creatorcontrib><creatorcontrib>Yan, Zoe Z.</creatorcontrib><creatorcontrib>Bakr, Waseem S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosenberg, Jason S.</au><au>Christakis, Lysander</au><au>Guardado-Sanchez, Elmer</au><au>Yan, Zoe Z.</au><au>Bakr, Waseem S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observation of the Hanbury Brown–Twiss effect with ultracold molecules</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>18</volume><issue>9</issue><spage>1062</spage><epage>1066</epage><pages>1062-1066</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Measuring the statistical correlations of individual quantum objects provides an excellent way to study complex quantum systems. Ultracold molecules represent a powerful platform for quantum simulation
1
and quantum computation
2
due to their rich and controllable internal degrees of freedom. However, the detection of correlations between single molecules in an ultracold gas has yet to be demonstrated. Here we observe the Hanbury Brown–Twiss effect—the emergence of bunching correlations of indistinguishable particles collected by separate detectors—in a gas of bosonic
23
Na
87
Rb Feshbach molecules, enabled by the realization of a molecular quantum gas microscope. We detect the characteristic bunching correlations in the density fluctuations of a two-dimensional molecular gas released from and subsequently recaptured in an optical lattice. The quantum gas microscope allows us to extract the positions of individual molecules with single-site resolution. As a result, we obtain a two-molecule interference pattern with high visibility. Although these measured correlations purely arise from the quantum statistics of the molecules, the demonstrated imaging capabilities open the way for site-resolved studies of interacting molecular gases in optical lattices.
The study of statistical correlations is central to the description of complex quantum objects. Measurements of density correlation functions of ultracold molecules are now possible through the realization of a molecular quantum gas microscope.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-022-01695-9</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-1901-8262</orcidid><orcidid>https://orcid.org/0000-0003-3410-5196</orcidid><orcidid>https://orcid.org/0000-0003-3784-6440</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2022-09, Vol.18 (9), p.1062-1066 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_proquest_journals_2711641146 |
source | Springer Nature - Connect here FIRST to enable access; SpringerLink Journals - AutoHoldings |
subjects | 639/766/36/1125 639/766/483/3926 Atomic Bunching Classical and Continuum Physics Complex Systems Condensed Matter Physics Density Gases Letter Mathematical and Computational Physics Molecular Molecular gases Optical and Plasma Physics Optical lattices Physics Physics and Astronomy Quantum statistics Theoretical Visibility |
title | Observation of the Hanbury Brown–Twiss effect with ultracold molecules |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A43%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observation%20of%20the%20Hanbury%20Brown%E2%80%93Twiss%20effect%20with%20ultracold%20molecules&rft.jtitle=Nature%20physics&rft.au=Rosenberg,%20Jason%20S.&rft.date=2022-09-01&rft.volume=18&rft.issue=9&rft.spage=1062&rft.epage=1066&rft.pages=1062-1066&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-022-01695-9&rft_dat=%3Cproquest_cross%3E2711641146%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2711641146&rft_id=info:pmid/&rfr_iscdi=true |