Tool health monitoring and prediction via attention-based encoder-decoder with a multi-step mechanism

In metal cutting processing, prediction of the tool wear or VB value can help early warning and timely tool replacement before the tool reaches the service life. Although the deep neural network is an effective method to predict the tool wear, the existing research predicts the tool wear only at its...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2022-09, Vol.122 (2), p.685-695
Hauptverfasser: Guo, Baosu, Zhang, Qin, Peng, Qinjing, Zhuang, Jichao, Wu, Fenghe, Zhang, Quan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 695
container_issue 2
container_start_page 685
container_title International journal of advanced manufacturing technology
container_volume 122
creator Guo, Baosu
Zhang, Qin
Peng, Qinjing
Zhuang, Jichao
Wu, Fenghe
Zhang, Quan
description In metal cutting processing, prediction of the tool wear or VB value can help early warning and timely tool replacement before the tool reaches the service life. Although the deep neural network is an effective method to predict the tool wear, the existing research predicts the tool wear only at its next time moment without considering the tool states at different time points. It ignores important information of the tool wear. In this paper, we propose a comprehensive model, which consists of a monitoring module and a prediction module, to monitor and predict the tool wear for the first time. In the monitoring module, a DenseNet model is constructed to monitor the tool wear via sensor signals. In addition, the prediction module based on attention mechanism is developed by simulating the human brain attention to selectively focus on the important part of processing sequence information. An encoder-decoder structure is introduced for a multi-step prediction of the tool wear. Several VB values in the nearest future are predicted by using sequential VB values monitored in the latest past. Experimental studies show that the short-term information has more influence on the tool wear prediction than the long-term information. The proposed method has been used to predict multi-step VB values in milling operations.
doi_str_mv 10.1007/s00170-022-09894-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2711632348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2711632348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-7eef4d8671c6898f7501717e1482ee1130d4f73ea88baa2282c1c3e2c92d29b53</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXAdTSP6SSzlOILCm7qOqTJHZsyk4xJqvjvnXYEd64OB845l_shdM3oLaNU3mVKmaSEck5oo5qKyBM0Y5UQRFC2OEUzymtFhKzVObrIeTfGa1arGYJ1jB3egunKFvcx-BKTD-_YBIeHBM7b4mPAn95gUwqEgyMbk8FhCDY6SMTBUfGXHycM7vdd8SQXGHAPdmuCz_0lOmtNl-HqV-fo7fFhvXwmq9enl-X9iljBmkIkQFs5VUtma9WoVi7Gr5gEVikOwJigrmqlAKPUxhjOFbfMCuC24Y43m4WYo5tpd0jxYw-56F3cpzCe1FwyVgsuKjWm-JSyKeacoNVD8r1J35pRfcCpJ5x6xKmPOLUcS2Iq5eEACNLf9D-tH8MWeOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2711632348</pqid></control><display><type>article</type><title>Tool health monitoring and prediction via attention-based encoder-decoder with a multi-step mechanism</title><source>Springer Nature - Complete Springer Journals</source><creator>Guo, Baosu ; Zhang, Qin ; Peng, Qinjing ; Zhuang, Jichao ; Wu, Fenghe ; Zhang, Quan</creator><creatorcontrib>Guo, Baosu ; Zhang, Qin ; Peng, Qinjing ; Zhuang, Jichao ; Wu, Fenghe ; Zhang, Quan</creatorcontrib><description>In metal cutting processing, prediction of the tool wear or VB value can help early warning and timely tool replacement before the tool reaches the service life. Although the deep neural network is an effective method to predict the tool wear, the existing research predicts the tool wear only at its next time moment without considering the tool states at different time points. It ignores important information of the tool wear. In this paper, we propose a comprehensive model, which consists of a monitoring module and a prediction module, to monitor and predict the tool wear for the first time. In the monitoring module, a DenseNet model is constructed to monitor the tool wear via sensor signals. In addition, the prediction module based on attention mechanism is developed by simulating the human brain attention to selectively focus on the important part of processing sequence information. An encoder-decoder structure is introduced for a multi-step prediction of the tool wear. Several VB values in the nearest future are predicted by using sequential VB values monitored in the latest past. Experimental studies show that the short-term information has more influence on the tool wear prediction than the long-term information. The proposed method has been used to predict multi-step VB values in milling operations.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-022-09894-7</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Accuracy ; Acoustics ; Advanced manufacturing technologies ; Artificial neural networks ; CAE) and Design ; Coders ; Computer-Aided Engineering (CAD ; Cutting wear ; Deep learning ; Encoders-Decoders ; Engineering ; Fault diagnosis ; Industrial and Production Engineering ; Machine learning ; Manufacturing ; Mechanical Engineering ; Media Management ; Metal cutting ; Methods ; Modules ; Neural networks ; Original Article ; Productivity ; Sensors ; Service life ; Time series ; Tool replacement ; Tool wear</subject><ispartof>International journal of advanced manufacturing technology, 2022-09, Vol.122 (2), p.685-695</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-7eef4d8671c6898f7501717e1482ee1130d4f73ea88baa2282c1c3e2c92d29b53</citedby><cites>FETCH-LOGICAL-c319t-7eef4d8671c6898f7501717e1482ee1130d4f73ea88baa2282c1c3e2c92d29b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-022-09894-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-022-09894-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Guo, Baosu</creatorcontrib><creatorcontrib>Zhang, Qin</creatorcontrib><creatorcontrib>Peng, Qinjing</creatorcontrib><creatorcontrib>Zhuang, Jichao</creatorcontrib><creatorcontrib>Wu, Fenghe</creatorcontrib><creatorcontrib>Zhang, Quan</creatorcontrib><title>Tool health monitoring and prediction via attention-based encoder-decoder with a multi-step mechanism</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>In metal cutting processing, prediction of the tool wear or VB value can help early warning and timely tool replacement before the tool reaches the service life. Although the deep neural network is an effective method to predict the tool wear, the existing research predicts the tool wear only at its next time moment without considering the tool states at different time points. It ignores important information of the tool wear. In this paper, we propose a comprehensive model, which consists of a monitoring module and a prediction module, to monitor and predict the tool wear for the first time. In the monitoring module, a DenseNet model is constructed to monitor the tool wear via sensor signals. In addition, the prediction module based on attention mechanism is developed by simulating the human brain attention to selectively focus on the important part of processing sequence information. An encoder-decoder structure is introduced for a multi-step prediction of the tool wear. Several VB values in the nearest future are predicted by using sequential VB values monitored in the latest past. Experimental studies show that the short-term information has more influence on the tool wear prediction than the long-term information. The proposed method has been used to predict multi-step VB values in milling operations.</description><subject>Accuracy</subject><subject>Acoustics</subject><subject>Advanced manufacturing technologies</subject><subject>Artificial neural networks</subject><subject>CAE) and Design</subject><subject>Coders</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Cutting wear</subject><subject>Deep learning</subject><subject>Encoders-Decoders</subject><subject>Engineering</subject><subject>Fault diagnosis</subject><subject>Industrial and Production Engineering</subject><subject>Machine learning</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Metal cutting</subject><subject>Methods</subject><subject>Modules</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Productivity</subject><subject>Sensors</subject><subject>Service life</subject><subject>Time series</subject><subject>Tool replacement</subject><subject>Tool wear</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wFXAdTSP6SSzlOILCm7qOqTJHZsyk4xJqvjvnXYEd64OB845l_shdM3oLaNU3mVKmaSEck5oo5qKyBM0Y5UQRFC2OEUzymtFhKzVObrIeTfGa1arGYJ1jB3egunKFvcx-BKTD-_YBIeHBM7b4mPAn95gUwqEgyMbk8FhCDY6SMTBUfGXHycM7vdd8SQXGHAPdmuCz_0lOmtNl-HqV-fo7fFhvXwmq9enl-X9iljBmkIkQFs5VUtma9WoVi7Gr5gEVikOwJigrmqlAKPUxhjOFbfMCuC24Y43m4WYo5tpd0jxYw-56F3cpzCe1FwyVgsuKjWm-JSyKeacoNVD8r1J35pRfcCpJ5x6xKmPOLUcS2Iq5eEACNLf9D-tH8MWeOA</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Guo, Baosu</creator><creator>Zhang, Qin</creator><creator>Peng, Qinjing</creator><creator>Zhuang, Jichao</creator><creator>Wu, Fenghe</creator><creator>Zhang, Quan</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220901</creationdate><title>Tool health monitoring and prediction via attention-based encoder-decoder with a multi-step mechanism</title><author>Guo, Baosu ; Zhang, Qin ; Peng, Qinjing ; Zhuang, Jichao ; Wu, Fenghe ; Zhang, Quan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-7eef4d8671c6898f7501717e1482ee1130d4f73ea88baa2282c1c3e2c92d29b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Acoustics</topic><topic>Advanced manufacturing technologies</topic><topic>Artificial neural networks</topic><topic>CAE) and Design</topic><topic>Coders</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Cutting wear</topic><topic>Deep learning</topic><topic>Encoders-Decoders</topic><topic>Engineering</topic><topic>Fault diagnosis</topic><topic>Industrial and Production Engineering</topic><topic>Machine learning</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Metal cutting</topic><topic>Methods</topic><topic>Modules</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Productivity</topic><topic>Sensors</topic><topic>Service life</topic><topic>Time series</topic><topic>Tool replacement</topic><topic>Tool wear</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Baosu</creatorcontrib><creatorcontrib>Zhang, Qin</creatorcontrib><creatorcontrib>Peng, Qinjing</creatorcontrib><creatorcontrib>Zhuang, Jichao</creatorcontrib><creatorcontrib>Wu, Fenghe</creatorcontrib><creatorcontrib>Zhang, Quan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Baosu</au><au>Zhang, Qin</au><au>Peng, Qinjing</au><au>Zhuang, Jichao</au><au>Wu, Fenghe</au><au>Zhang, Quan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tool health monitoring and prediction via attention-based encoder-decoder with a multi-step mechanism</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>122</volume><issue>2</issue><spage>685</spage><epage>695</epage><pages>685-695</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>In metal cutting processing, prediction of the tool wear or VB value can help early warning and timely tool replacement before the tool reaches the service life. Although the deep neural network is an effective method to predict the tool wear, the existing research predicts the tool wear only at its next time moment without considering the tool states at different time points. It ignores important information of the tool wear. In this paper, we propose a comprehensive model, which consists of a monitoring module and a prediction module, to monitor and predict the tool wear for the first time. In the monitoring module, a DenseNet model is constructed to monitor the tool wear via sensor signals. In addition, the prediction module based on attention mechanism is developed by simulating the human brain attention to selectively focus on the important part of processing sequence information. An encoder-decoder structure is introduced for a multi-step prediction of the tool wear. Several VB values in the nearest future are predicted by using sequential VB values monitored in the latest past. Experimental studies show that the short-term information has more influence on the tool wear prediction than the long-term information. The proposed method has been used to predict multi-step VB values in milling operations.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-022-09894-7</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2022-09, Vol.122 (2), p.685-695
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2711632348
source Springer Nature - Complete Springer Journals
subjects Accuracy
Acoustics
Advanced manufacturing technologies
Artificial neural networks
CAE) and Design
Coders
Computer-Aided Engineering (CAD
Cutting wear
Deep learning
Encoders-Decoders
Engineering
Fault diagnosis
Industrial and Production Engineering
Machine learning
Manufacturing
Mechanical Engineering
Media Management
Metal cutting
Methods
Modules
Neural networks
Original Article
Productivity
Sensors
Service life
Time series
Tool replacement
Tool wear
title Tool health monitoring and prediction via attention-based encoder-decoder with a multi-step mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T23%3A33%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tool%20health%20monitoring%20and%20prediction%20via%20attention-based%20encoder-decoder%20with%20a%20multi-step%20mechanism&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Guo,%20Baosu&rft.date=2022-09-01&rft.volume=122&rft.issue=2&rft.spage=685&rft.epage=695&rft.pages=685-695&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-022-09894-7&rft_dat=%3Cproquest_cross%3E2711632348%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2711632348&rft_id=info:pmid/&rfr_iscdi=true