A bilayer optimization strategy of optimal sensor placement for parameter identification under uncertainty
A bilayer optimization strategy is proposed in this research in order to improve the efficiency in the process of optimal sensor placement aiming at decreasing the uncertainty in identification of parameters. Firstly, the surrogate model between structural parameters and responses is established to...
Gespeichert in:
Veröffentlicht in: | Structural and multidisciplinary optimization 2022-09, Vol.65 (9), Article 264 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | |
container_title | Structural and multidisciplinary optimization |
container_volume | 65 |
creator | Shi, Qinghe Wang, Hao Wang, Lei Luo, Zhenxian Wang, Xiaojun Han, Wenqin |
description | A bilayer optimization strategy is proposed in this research in order to improve the efficiency in the process of optimal sensor placement aiming at decreasing the uncertainty in identification of parameters. Firstly, the surrogate model between structural parameters and responses is established to improve the solution efficiency of uncertain parameters. Secondly, a particle swarm optimization algorithm based on spatial coordinates is proposed for effective optimal sensor placement. Finally, this research proposes an efficient solution strategy for optimal sensor placement with uncertainty, i.e., the proposed coordinate-based particle swarm optimization method is utilized for outer layer optimization, and surrogate model is used to solve the interval boundaries of structural parameters as an inner layer optimization method. The optimization results aiming at redundancy index of rectangular plate based on the proposed optimization algorithm and existing algorithms are compared. The mean value of optimization results of proposed method is 29.7% higher than the mean value of optimization results of GA. The proposed optimization strategy is verified by numerical example and an experimental work. The results of single objective optimization and multi-objective optimization are given, respectively. The computational efficiencies of the traditional method and the proposed optimization method are compared. The optimization efficiency of the proposed optimization method is four orders of magnitude higher than that of the traditional method. The proposed strategy provides a feasible idea for improving the efficiency of large-scale sensor layout optimization under uncertainty. |
doi_str_mv | 10.1007/s00158-022-03370-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2711629144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2711629144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-26ca42848c31db73500e1e76fe02e064bd914aad238b668cd5fdfac14b81e9aa3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Fz9VJmrbpcVn8BwteFLyFNJ0sWbppTdLD-unNWtGbp2Rm3u8N8wi5pnBLAeq7AEBLkQNjORRFDTk7IQta0TKnXIjT33_9fk4uQtgBgADeLMhulbW2Vwf02TBGu7efKtrBZSF6FXF7yAYzD1SfBXRh8NnYK417dDEzx0p5tceYeNulnjVWzw6T61Jzchp9VNbFwyU5M6oPePXzLsnbw_3r-infvDw-r1ebXBe0iTmrtOJMcJHKrq2LEgAp1pVBYAgVb7uGcqU6Voi2qoTuStMZpSlvBcVGqWJJbmbf0Q8fE4Yod8PkXVopWU1pxRLPk4rNKu2HEDwaOfp0pT9ICvKYqZwzlSlT-Z2pZAkqZigksdui_7P-h_oCS2l8iw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2711629144</pqid></control><display><type>article</type><title>A bilayer optimization strategy of optimal sensor placement for parameter identification under uncertainty</title><source>SpringerLink Journals</source><creator>Shi, Qinghe ; Wang, Hao ; Wang, Lei ; Luo, Zhenxian ; Wang, Xiaojun ; Han, Wenqin</creator><creatorcontrib>Shi, Qinghe ; Wang, Hao ; Wang, Lei ; Luo, Zhenxian ; Wang, Xiaojun ; Han, Wenqin</creatorcontrib><description>A bilayer optimization strategy is proposed in this research in order to improve the efficiency in the process of optimal sensor placement aiming at decreasing the uncertainty in identification of parameters. Firstly, the surrogate model between structural parameters and responses is established to improve the solution efficiency of uncertain parameters. Secondly, a particle swarm optimization algorithm based on spatial coordinates is proposed for effective optimal sensor placement. Finally, this research proposes an efficient solution strategy for optimal sensor placement with uncertainty, i.e., the proposed coordinate-based particle swarm optimization method is utilized for outer layer optimization, and surrogate model is used to solve the interval boundaries of structural parameters as an inner layer optimization method. The optimization results aiming at redundancy index of rectangular plate based on the proposed optimization algorithm and existing algorithms are compared. The mean value of optimization results of proposed method is 29.7% higher than the mean value of optimization results of GA. The proposed optimization strategy is verified by numerical example and an experimental work. The results of single objective optimization and multi-objective optimization are given, respectively. The computational efficiencies of the traditional method and the proposed optimization method are compared. The optimization efficiency of the proposed optimization method is four orders of magnitude higher than that of the traditional method. The proposed strategy provides a feasible idea for improving the efficiency of large-scale sensor layout optimization under uncertainty.</description><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/s00158-022-03370-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Computational Mathematics and Numerical Analysis ; Efficiency ; Engineering ; Engineering Design ; Mathematical models ; Multiple objective analysis ; Optimization algorithms ; Parameter identification ; Parameter uncertainty ; Particle swarm optimization ; Placement ; Rectangular plates ; Redundancy ; Research Paper ; Sensors ; Theoretical and Applied Mechanics</subject><ispartof>Structural and multidisciplinary optimization, 2022-09, Vol.65 (9), Article 264</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-26ca42848c31db73500e1e76fe02e064bd914aad238b668cd5fdfac14b81e9aa3</citedby><cites>FETCH-LOGICAL-c319t-26ca42848c31db73500e1e76fe02e064bd914aad238b668cd5fdfac14b81e9aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00158-022-03370-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00158-022-03370-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Shi, Qinghe</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Luo, Zhenxian</creatorcontrib><creatorcontrib>Wang, Xiaojun</creatorcontrib><creatorcontrib>Han, Wenqin</creatorcontrib><title>A bilayer optimization strategy of optimal sensor placement for parameter identification under uncertainty</title><title>Structural and multidisciplinary optimization</title><addtitle>Struct Multidisc Optim</addtitle><description>A bilayer optimization strategy is proposed in this research in order to improve the efficiency in the process of optimal sensor placement aiming at decreasing the uncertainty in identification of parameters. Firstly, the surrogate model between structural parameters and responses is established to improve the solution efficiency of uncertain parameters. Secondly, a particle swarm optimization algorithm based on spatial coordinates is proposed for effective optimal sensor placement. Finally, this research proposes an efficient solution strategy for optimal sensor placement with uncertainty, i.e., the proposed coordinate-based particle swarm optimization method is utilized for outer layer optimization, and surrogate model is used to solve the interval boundaries of structural parameters as an inner layer optimization method. The optimization results aiming at redundancy index of rectangular plate based on the proposed optimization algorithm and existing algorithms are compared. The mean value of optimization results of proposed method is 29.7% higher than the mean value of optimization results of GA. The proposed optimization strategy is verified by numerical example and an experimental work. The results of single objective optimization and multi-objective optimization are given, respectively. The computational efficiencies of the traditional method and the proposed optimization method are compared. The optimization efficiency of the proposed optimization method is four orders of magnitude higher than that of the traditional method. The proposed strategy provides a feasible idea for improving the efficiency of large-scale sensor layout optimization under uncertainty.</description><subject>Algorithms</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Efficiency</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Mathematical models</subject><subject>Multiple objective analysis</subject><subject>Optimization algorithms</subject><subject>Parameter identification</subject><subject>Parameter uncertainty</subject><subject>Particle swarm optimization</subject><subject>Placement</subject><subject>Rectangular plates</subject><subject>Redundancy</subject><subject>Research Paper</subject><subject>Sensors</subject><subject>Theoretical and Applied Mechanics</subject><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE9LxDAQxYMouK5-AU8Fz9VJmrbpcVn8BwteFLyFNJ0sWbppTdLD-unNWtGbp2Rm3u8N8wi5pnBLAeq7AEBLkQNjORRFDTk7IQta0TKnXIjT33_9fk4uQtgBgADeLMhulbW2Vwf02TBGu7efKtrBZSF6FXF7yAYzD1SfBXRh8NnYK417dDEzx0p5tceYeNulnjVWzw6T61Jzchp9VNbFwyU5M6oPePXzLsnbw_3r-infvDw-r1ebXBe0iTmrtOJMcJHKrq2LEgAp1pVBYAgVb7uGcqU6Voi2qoTuStMZpSlvBcVGqWJJbmbf0Q8fE4Yod8PkXVopWU1pxRLPk4rNKu2HEDwaOfp0pT9ICvKYqZwzlSlT-Z2pZAkqZigksdui_7P-h_oCS2l8iw</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Shi, Qinghe</creator><creator>Wang, Hao</creator><creator>Wang, Lei</creator><creator>Luo, Zhenxian</creator><creator>Wang, Xiaojun</creator><creator>Han, Wenqin</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220901</creationdate><title>A bilayer optimization strategy of optimal sensor placement for parameter identification under uncertainty</title><author>Shi, Qinghe ; Wang, Hao ; Wang, Lei ; Luo, Zhenxian ; Wang, Xiaojun ; Han, Wenqin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-26ca42848c31db73500e1e76fe02e064bd914aad238b668cd5fdfac14b81e9aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Efficiency</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Mathematical models</topic><topic>Multiple objective analysis</topic><topic>Optimization algorithms</topic><topic>Parameter identification</topic><topic>Parameter uncertainty</topic><topic>Particle swarm optimization</topic><topic>Placement</topic><topic>Rectangular plates</topic><topic>Redundancy</topic><topic>Research Paper</topic><topic>Sensors</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Qinghe</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Luo, Zhenxian</creatorcontrib><creatorcontrib>Wang, Xiaojun</creatorcontrib><creatorcontrib>Han, Wenqin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Structural and multidisciplinary optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Qinghe</au><au>Wang, Hao</au><au>Wang, Lei</au><au>Luo, Zhenxian</au><au>Wang, Xiaojun</au><au>Han, Wenqin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A bilayer optimization strategy of optimal sensor placement for parameter identification under uncertainty</atitle><jtitle>Structural and multidisciplinary optimization</jtitle><stitle>Struct Multidisc Optim</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>65</volume><issue>9</issue><artnum>264</artnum><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>A bilayer optimization strategy is proposed in this research in order to improve the efficiency in the process of optimal sensor placement aiming at decreasing the uncertainty in identification of parameters. Firstly, the surrogate model between structural parameters and responses is established to improve the solution efficiency of uncertain parameters. Secondly, a particle swarm optimization algorithm based on spatial coordinates is proposed for effective optimal sensor placement. Finally, this research proposes an efficient solution strategy for optimal sensor placement with uncertainty, i.e., the proposed coordinate-based particle swarm optimization method is utilized for outer layer optimization, and surrogate model is used to solve the interval boundaries of structural parameters as an inner layer optimization method. The optimization results aiming at redundancy index of rectangular plate based on the proposed optimization algorithm and existing algorithms are compared. The mean value of optimization results of proposed method is 29.7% higher than the mean value of optimization results of GA. The proposed optimization strategy is verified by numerical example and an experimental work. The results of single objective optimization and multi-objective optimization are given, respectively. The computational efficiencies of the traditional method and the proposed optimization method are compared. The optimization efficiency of the proposed optimization method is four orders of magnitude higher than that of the traditional method. The proposed strategy provides a feasible idea for improving the efficiency of large-scale sensor layout optimization under uncertainty.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00158-022-03370-2</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-147X |
ispartof | Structural and multidisciplinary optimization, 2022-09, Vol.65 (9), Article 264 |
issn | 1615-147X 1615-1488 |
language | eng |
recordid | cdi_proquest_journals_2711629144 |
source | SpringerLink Journals |
subjects | Algorithms Computational Mathematics and Numerical Analysis Efficiency Engineering Engineering Design Mathematical models Multiple objective analysis Optimization algorithms Parameter identification Parameter uncertainty Particle swarm optimization Placement Rectangular plates Redundancy Research Paper Sensors Theoretical and Applied Mechanics |
title | A bilayer optimization strategy of optimal sensor placement for parameter identification under uncertainty |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A46%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20bilayer%20optimization%20strategy%20of%20optimal%20sensor%20placement%20for%20parameter%20identification%20under%20uncertainty&rft.jtitle=Structural%20and%20multidisciplinary%20optimization&rft.au=Shi,%20Qinghe&rft.date=2022-09-01&rft.volume=65&rft.issue=9&rft.artnum=264&rft.issn=1615-147X&rft.eissn=1615-1488&rft_id=info:doi/10.1007/s00158-022-03370-2&rft_dat=%3Cproquest_cross%3E2711629144%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2711629144&rft_id=info:pmid/&rfr_iscdi=true |