A Deep-Learning Based Method for Analysis of Students’ Attention in Offline Class

Students’ actual learning engagement in class, which we call learning attention, is a major indicator used to measure learning outcomes. Obtaining and analyzing students’ attention accurately in offline classes is important empirical research that can improve teachers’ teaching methods. This paper p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2022-09, Vol.11 (17), p.2663
Hauptverfasser: Ling, Xufeng, Yang, Jie, Liang, Jingxin, Zhu, Huaizhong, Sun, Hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Students’ actual learning engagement in class, which we call learning attention, is a major indicator used to measure learning outcomes. Obtaining and analyzing students’ attention accurately in offline classes is important empirical research that can improve teachers’ teaching methods. This paper proposes a method to obtain and measure students’ attention in class by applying a variety of deep-learning models and initiatively divides a whole class into a series of time durations, which are categorized into four states: lecturing, interaction, practice, and transcription. After video and audio information is taken with Internet of Things (IoT) technology in class, Retinaface and the Vision Transformer (ViT) model is used to detect faces and extract students’ head-pose parameters. Automatic speech recognition (ASR) models are used to divide a class into a series of four states. Combining the class-state sequence and each student’s head-pose parameters, the learning attention of each student can be accurately calculated. Finally, individual and statistical learning attention analyses are conducted that can help teachers to improve their teaching methods. This method shows potential application value and can be deployed in schools and applied in different smart education programs.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics11172663