Convective mesoscale turbulence at very low Prandtl numbers
Horizontally extended turbulent convection, termed mesoscale convection in natural systems, remains a challenge to investigate in both experiments and simulations. This is particularly so for very low molecular Prandtl numbers, such as occur in stellar convection and in the Earth's outer core....
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2022-10, Vol.948, Article A23 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Journal of fluid mechanics |
container_volume | 948 |
creator | Pandey, Ambrish Krasnov, Dmitry Sreenivasan, Katepalli R. Schumacher, Jörg |
description | Horizontally extended turbulent convection, termed mesoscale convection in natural systems, remains a challenge to investigate in both experiments and simulations. This is particularly so for very low molecular Prandtl numbers, such as occur in stellar convection and in the Earth's outer core. The present study reports three-dimensional direct numerical simulations of turbulent Rayleigh–Bénard convection in square boxes of side length $L$ and height $H$ with the aspect ratio $\varGamma =L/H$ of 25, for Prandtl numbers that span almost 4 orders of magnitude, $10^{-3}\le Pr \le 7$, and Rayleigh numbers $10^5 \le Ra \le 10^7$, obtained by massively parallel computations on grids of up to $5.36\times 10^{11}$ points. The low end of this $Pr$-range cannot be accessed in controlled laboratory measurements. We report the essential properties of the flow and their trends with the Rayleigh and Prandtl numbers, in particular, the global transport of momentum and heat – the latter decomposed into convective and diffusive contributions – across the convection layer, mean vertical profiles of the temperature and temperature fluctuations and the kinetic energy and thermal dissipation rates. We also explore the degree to which the turbulence in the bulk of the convection layer resembles classical homogeneous and isotropic turbulence in terms of spectra, increment moments and dissipative anomaly, and find close similarities. Finally, we show that a characteristic scale of the order of the mesoscale seems to saturate to a wavelength of $\lambda \gtrsim 3H$ for $Pr\lesssim 0.005$. We briefly discuss possible implications of these results for the development of subgrid-scale parameterization of turbulent convection. |
doi_str_mv | 10.1017/jfm.2022.694 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2711230634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2022_694</cupid><sourcerecordid>2711230634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-e4a2134a2379ef062b81533a47d1d45a68bb2368bb69ceadb799a00129158b553</originalsourceid><addsrcrecordid>eNptkE1LxDAQhoMouK7e_AEBr7bmq8kGT1L8ggU96Dkk7VRa-rEmbWX_vSm74MXLOzA8887Mi9A1JSklVN01VZcywlgqtThBKyqkTpQU2SlakdhOKGXkHF2E0BBCOdFqhe7zoZ-hGOsZcAdhCIVtAY-Td1MLfQHYjngGv8ft8IPfve3LscX91Dnw4RKdVbYNcHWsa_T59PiRvyTbt-fX_GGbFFyQMQFhGeVRuNJQEcnchmacW6FKWorMyo1zjC8qdQG2dEprGw9kmmYbl2V8jW4Ovjs_fE8QRtMMk-_jSsNU_IkTyUWkbg9U4YcQPFRm5-vO-r2hxCzxmBiPWeIxMZ6Ip0fcds7X5Rf8uf478AvRemY3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2711230634</pqid></control><display><type>article</type><title>Convective mesoscale turbulence at very low Prandtl numbers</title><source>Cambridge University Press Journals Complete</source><creator>Pandey, Ambrish ; Krasnov, Dmitry ; Sreenivasan, Katepalli R. ; Schumacher, Jörg</creator><creatorcontrib>Pandey, Ambrish ; Krasnov, Dmitry ; Sreenivasan, Katepalli R. ; Schumacher, Jörg</creatorcontrib><description>Horizontally extended turbulent convection, termed mesoscale convection in natural systems, remains a challenge to investigate in both experiments and simulations. This is particularly so for very low molecular Prandtl numbers, such as occur in stellar convection and in the Earth's outer core. The present study reports three-dimensional direct numerical simulations of turbulent Rayleigh–Bénard convection in square boxes of side length $L$ and height $H$ with the aspect ratio $\varGamma =L/H$ of 25, for Prandtl numbers that span almost 4 orders of magnitude, $10^{-3}\le Pr \le 7$, and Rayleigh numbers $10^5 \le Ra \le 10^7$, obtained by massively parallel computations on grids of up to $5.36\times 10^{11}$ points. The low end of this $Pr$-range cannot be accessed in controlled laboratory measurements. We report the essential properties of the flow and their trends with the Rayleigh and Prandtl numbers, in particular, the global transport of momentum and heat – the latter decomposed into convective and diffusive contributions – across the convection layer, mean vertical profiles of the temperature and temperature fluctuations and the kinetic energy and thermal dissipation rates. We also explore the degree to which the turbulence in the bulk of the convection layer resembles classical homogeneous and isotropic turbulence in terms of spectra, increment moments and dissipative anomaly, and find close similarities. Finally, we show that a characteristic scale of the order of the mesoscale seems to saturate to a wavelength of $\lambda \gtrsim 3H$ for $Pr\lesssim 0.005$. We briefly discuss possible implications of these results for the development of subgrid-scale parameterization of turbulent convection.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2022.694</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Approximation ; Aspect ratio ; Convection ; Direct numerical simulation ; Dissipation ; Earth core ; Energy dissipation ; Heat ; Isotropic turbulence ; JFM Papers ; Kinetic energy ; Mesoscale phenomena ; Momentum ; Parameterization ; Rayleigh number ; Rayleigh-Benard convection ; Reynolds number ; Stellar convection ; Temperature ; Trends ; Turbulence ; Velocity ; Vertical profiles ; Wavelength</subject><ispartof>Journal of fluid mechanics, 2022-10, Vol.948, Article A23</ispartof><rights>The Author(s), 2022. Published by Cambridge University Press.</rights><rights>The Author(s), 2022. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-e4a2134a2379ef062b81533a47d1d45a68bb2368bb69ceadb799a00129158b553</citedby><cites>FETCH-LOGICAL-c340t-e4a2134a2379ef062b81533a47d1d45a68bb2368bb69ceadb799a00129158b553</cites><orcidid>0000-0002-1359-4536 ; 0000-0002-8339-7749 ; 0000-0001-8232-6626 ; 0000-0002-3943-6827</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112022006942/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Pandey, Ambrish</creatorcontrib><creatorcontrib>Krasnov, Dmitry</creatorcontrib><creatorcontrib>Sreenivasan, Katepalli R.</creatorcontrib><creatorcontrib>Schumacher, Jörg</creatorcontrib><title>Convective mesoscale turbulence at very low Prandtl numbers</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Horizontally extended turbulent convection, termed mesoscale convection in natural systems, remains a challenge to investigate in both experiments and simulations. This is particularly so for very low molecular Prandtl numbers, such as occur in stellar convection and in the Earth's outer core. The present study reports three-dimensional direct numerical simulations of turbulent Rayleigh–Bénard convection in square boxes of side length $L$ and height $H$ with the aspect ratio $\varGamma =L/H$ of 25, for Prandtl numbers that span almost 4 orders of magnitude, $10^{-3}\le Pr \le 7$, and Rayleigh numbers $10^5 \le Ra \le 10^7$, obtained by massively parallel computations on grids of up to $5.36\times 10^{11}$ points. The low end of this $Pr$-range cannot be accessed in controlled laboratory measurements. We report the essential properties of the flow and their trends with the Rayleigh and Prandtl numbers, in particular, the global transport of momentum and heat – the latter decomposed into convective and diffusive contributions – across the convection layer, mean vertical profiles of the temperature and temperature fluctuations and the kinetic energy and thermal dissipation rates. We also explore the degree to which the turbulence in the bulk of the convection layer resembles classical homogeneous and isotropic turbulence in terms of spectra, increment moments and dissipative anomaly, and find close similarities. Finally, we show that a characteristic scale of the order of the mesoscale seems to saturate to a wavelength of $\lambda \gtrsim 3H$ for $Pr\lesssim 0.005$. We briefly discuss possible implications of these results for the development of subgrid-scale parameterization of turbulent convection.</description><subject>Approximation</subject><subject>Aspect ratio</subject><subject>Convection</subject><subject>Direct numerical simulation</subject><subject>Dissipation</subject><subject>Earth core</subject><subject>Energy dissipation</subject><subject>Heat</subject><subject>Isotropic turbulence</subject><subject>JFM Papers</subject><subject>Kinetic energy</subject><subject>Mesoscale phenomena</subject><subject>Momentum</subject><subject>Parameterization</subject><subject>Rayleigh number</subject><subject>Rayleigh-Benard convection</subject><subject>Reynolds number</subject><subject>Stellar convection</subject><subject>Temperature</subject><subject>Trends</subject><subject>Turbulence</subject><subject>Velocity</subject><subject>Vertical profiles</subject><subject>Wavelength</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkE1LxDAQhoMouK7e_AEBr7bmq8kGT1L8ggU96Dkk7VRa-rEmbWX_vSm74MXLOzA8887Mi9A1JSklVN01VZcywlgqtThBKyqkTpQU2SlakdhOKGXkHF2E0BBCOdFqhe7zoZ-hGOsZcAdhCIVtAY-Td1MLfQHYjngGv8ft8IPfve3LscX91Dnw4RKdVbYNcHWsa_T59PiRvyTbt-fX_GGbFFyQMQFhGeVRuNJQEcnchmacW6FKWorMyo1zjC8qdQG2dEprGw9kmmYbl2V8jW4Ovjs_fE8QRtMMk-_jSsNU_IkTyUWkbg9U4YcQPFRm5-vO-r2hxCzxmBiPWeIxMZ6Ip0fcds7X5Rf8uf478AvRemY3</recordid><startdate>20221010</startdate><enddate>20221010</enddate><creator>Pandey, Ambrish</creator><creator>Krasnov, Dmitry</creator><creator>Sreenivasan, Katepalli R.</creator><creator>Schumacher, Jörg</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-1359-4536</orcidid><orcidid>https://orcid.org/0000-0002-8339-7749</orcidid><orcidid>https://orcid.org/0000-0001-8232-6626</orcidid><orcidid>https://orcid.org/0000-0002-3943-6827</orcidid></search><sort><creationdate>20221010</creationdate><title>Convective mesoscale turbulence at very low Prandtl numbers</title><author>Pandey, Ambrish ; Krasnov, Dmitry ; Sreenivasan, Katepalli R. ; Schumacher, Jörg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-e4a2134a2379ef062b81533a47d1d45a68bb2368bb69ceadb799a00129158b553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Approximation</topic><topic>Aspect ratio</topic><topic>Convection</topic><topic>Direct numerical simulation</topic><topic>Dissipation</topic><topic>Earth core</topic><topic>Energy dissipation</topic><topic>Heat</topic><topic>Isotropic turbulence</topic><topic>JFM Papers</topic><topic>Kinetic energy</topic><topic>Mesoscale phenomena</topic><topic>Momentum</topic><topic>Parameterization</topic><topic>Rayleigh number</topic><topic>Rayleigh-Benard convection</topic><topic>Reynolds number</topic><topic>Stellar convection</topic><topic>Temperature</topic><topic>Trends</topic><topic>Turbulence</topic><topic>Velocity</topic><topic>Vertical profiles</topic><topic>Wavelength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pandey, Ambrish</creatorcontrib><creatorcontrib>Krasnov, Dmitry</creatorcontrib><creatorcontrib>Sreenivasan, Katepalli R.</creatorcontrib><creatorcontrib>Schumacher, Jörg</creatorcontrib><collection>Cambridge Journals Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pandey, Ambrish</au><au>Krasnov, Dmitry</au><au>Sreenivasan, Katepalli R.</au><au>Schumacher, Jörg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convective mesoscale turbulence at very low Prandtl numbers</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2022-10-10</date><risdate>2022</risdate><volume>948</volume><artnum>A23</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>Horizontally extended turbulent convection, termed mesoscale convection in natural systems, remains a challenge to investigate in both experiments and simulations. This is particularly so for very low molecular Prandtl numbers, such as occur in stellar convection and in the Earth's outer core. The present study reports three-dimensional direct numerical simulations of turbulent Rayleigh–Bénard convection in square boxes of side length $L$ and height $H$ with the aspect ratio $\varGamma =L/H$ of 25, for Prandtl numbers that span almost 4 orders of magnitude, $10^{-3}\le Pr \le 7$, and Rayleigh numbers $10^5 \le Ra \le 10^7$, obtained by massively parallel computations on grids of up to $5.36\times 10^{11}$ points. The low end of this $Pr$-range cannot be accessed in controlled laboratory measurements. We report the essential properties of the flow and their trends with the Rayleigh and Prandtl numbers, in particular, the global transport of momentum and heat – the latter decomposed into convective and diffusive contributions – across the convection layer, mean vertical profiles of the temperature and temperature fluctuations and the kinetic energy and thermal dissipation rates. We also explore the degree to which the turbulence in the bulk of the convection layer resembles classical homogeneous and isotropic turbulence in terms of spectra, increment moments and dissipative anomaly, and find close similarities. Finally, we show that a characteristic scale of the order of the mesoscale seems to saturate to a wavelength of $\lambda \gtrsim 3H$ for $Pr\lesssim 0.005$. We briefly discuss possible implications of these results for the development of subgrid-scale parameterization of turbulent convection.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2022.694</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-1359-4536</orcidid><orcidid>https://orcid.org/0000-0002-8339-7749</orcidid><orcidid>https://orcid.org/0000-0001-8232-6626</orcidid><orcidid>https://orcid.org/0000-0002-3943-6827</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2022-10, Vol.948, Article A23 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_journals_2711230634 |
source | Cambridge University Press Journals Complete |
subjects | Approximation Aspect ratio Convection Direct numerical simulation Dissipation Earth core Energy dissipation Heat Isotropic turbulence JFM Papers Kinetic energy Mesoscale phenomena Momentum Parameterization Rayleigh number Rayleigh-Benard convection Reynolds number Stellar convection Temperature Trends Turbulence Velocity Vertical profiles Wavelength |
title | Convective mesoscale turbulence at very low Prandtl numbers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T04%3A01%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convective%20mesoscale%20turbulence%20at%20very%20low%20Prandtl%20numbers&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Pandey,%20Ambrish&rft.date=2022-10-10&rft.volume=948&rft.artnum=A23&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2022.694&rft_dat=%3Cproquest_cross%3E2711230634%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2711230634&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2022_694&rfr_iscdi=true |