Optimized hybrid design with stabilizing transition probability for stochastic Markovian jump systems under hidden Markov mode detector

The transition probability synthesis problem is addressed for discrete‐time Markovian jump linear system (MJLS) with state‐dependent multiplicative noises. The proposed mode‐dependent parametric approach is employed to derive the necessary and sufficient condition for ensuring the existence of the s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Asian journal of control 2022-09, Vol.24 (5), p.2787-2795
Hauptverfasser: Jia, Tinggang, Song, Jun, Niu, Yugang, Chen, Bei, Cao, Zhiru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2795
container_issue 5
container_start_page 2787
container_title Asian journal of control
container_volume 24
creator Jia, Tinggang
Song, Jun
Niu, Yugang
Chen, Bei
Cao, Zhiru
description The transition probability synthesis problem is addressed for discrete‐time Markovian jump linear system (MJLS) with state‐dependent multiplicative noises. The proposed mode‐dependent parametric approach is employed to derive the necessary and sufficient condition for ensuring the existence of the stabilizing transition probability matrix (TPM). A key feature here is that the system mode is considered to be unavailable to the controller but can just be observed via a hidden Markov mode detector. To this end, a hybrid design is developed by co‐designing the stabilizing TPM and the asynchronous mode‐dependent state‐feedback controller. A rank‐constrained nonconvex problem is formulated to solve the hybrid design strategy. Specifically, a binary genetic algorithm (GA) is introduced for overcoming the computation difficulties arising from searching optimized mode‐dependent parameters. Finally, two numerical examples are provided to verify the effectiveness and advantages of the proposed hybrid design strategy via GA.
doi_str_mv 10.1002/asjc.2649
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2711221854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2711221854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2979-d06b69732bb38e8efde7fe1c1b7cc8b929dbe9a9e533c7e7f7d0f5b5f64e4f923</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRSMEEqWw4A8ssWKR1naeXlYVTxV1AawjPyaNQxMH26VKf4DfJn1sWc1I98xc3RsEtwRPCMZ0yl0tJzSN2VkwIiyKwxSz6HzYk5SEeUqTy-DKuRrjlER5Mgp-l53Xjd6BQlUvrFZIgdOrFm21r5DzXOi13ul2hbzlrdNemxZ11oiD4HtUGjtgRlbceS3RG7df5kfzFtWbpkOudx4ahzatAosqrRS0JwY1RsHg5kF6Y6-Di5KvHdyc5jj4fHz4mD-Hi-XTy3y2CCVlGQsVTkXKsogKEeWQQ6kgK4FIIjIpc8EoUwIYZ5BEkcwGLVO4TERSpjHEJaPROLg7_h0yfG_A-aI2G9sOlgXNCKGU5Ek8UPdHSlrjnIWy6KxuuO0Lgot9z8W-52Lf88BOj-xWr6H_Hyxm76_zw8UfiP-EdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2711221854</pqid></control><display><type>article</type><title>Optimized hybrid design with stabilizing transition probability for stochastic Markovian jump systems under hidden Markov mode detector</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jia, Tinggang ; Song, Jun ; Niu, Yugang ; Chen, Bei ; Cao, Zhiru</creator><creatorcontrib>Jia, Tinggang ; Song, Jun ; Niu, Yugang ; Chen, Bei ; Cao, Zhiru</creatorcontrib><description>The transition probability synthesis problem is addressed for discrete‐time Markovian jump linear system (MJLS) with state‐dependent multiplicative noises. The proposed mode‐dependent parametric approach is employed to derive the necessary and sufficient condition for ensuring the existence of the stabilizing transition probability matrix (TPM). A key feature here is that the system mode is considered to be unavailable to the controller but can just be observed via a hidden Markov mode detector. To this end, a hybrid design is developed by co‐designing the stabilizing TPM and the asynchronous mode‐dependent state‐feedback controller. A rank‐constrained nonconvex problem is formulated to solve the hybrid design strategy. Specifically, a binary genetic algorithm (GA) is introduced for overcoming the computation difficulties arising from searching optimized mode‐dependent parameters. Finally, two numerical examples are provided to verify the effectiveness and advantages of the proposed hybrid design strategy via GA.</description><identifier>ISSN: 1561-8625</identifier><identifier>EISSN: 1934-6093</identifier><identifier>DOI: 10.1002/asjc.2649</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Design optimization ; Feedback control ; genetic algorithm ; Genetic algorithms ; hidden Markov model ; stochastic Markovian jump linear systems ; Transition probabilities ; transition probability matrix</subject><ispartof>Asian journal of control, 2022-09, Vol.24 (5), p.2787-2795</ispartof><rights>2021 Chinese Automatic Control Society and John Wiley &amp; Sons Australia, Ltd</rights><rights>2022 Chinese Automatic Control Society and John Wiley &amp; Sons Australia, Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2979-d06b69732bb38e8efde7fe1c1b7cc8b929dbe9a9e533c7e7f7d0f5b5f64e4f923</citedby><cites>FETCH-LOGICAL-c2979-d06b69732bb38e8efde7fe1c1b7cc8b929dbe9a9e533c7e7f7d0f5b5f64e4f923</cites><orcidid>0000-0003-4718-9835 ; 0000-0002-3010-1879</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fasjc.2649$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fasjc.2649$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Jia, Tinggang</creatorcontrib><creatorcontrib>Song, Jun</creatorcontrib><creatorcontrib>Niu, Yugang</creatorcontrib><creatorcontrib>Chen, Bei</creatorcontrib><creatorcontrib>Cao, Zhiru</creatorcontrib><title>Optimized hybrid design with stabilizing transition probability for stochastic Markovian jump systems under hidden Markov mode detector</title><title>Asian journal of control</title><description>The transition probability synthesis problem is addressed for discrete‐time Markovian jump linear system (MJLS) with state‐dependent multiplicative noises. The proposed mode‐dependent parametric approach is employed to derive the necessary and sufficient condition for ensuring the existence of the stabilizing transition probability matrix (TPM). A key feature here is that the system mode is considered to be unavailable to the controller but can just be observed via a hidden Markov mode detector. To this end, a hybrid design is developed by co‐designing the stabilizing TPM and the asynchronous mode‐dependent state‐feedback controller. A rank‐constrained nonconvex problem is formulated to solve the hybrid design strategy. Specifically, a binary genetic algorithm (GA) is introduced for overcoming the computation difficulties arising from searching optimized mode‐dependent parameters. Finally, two numerical examples are provided to verify the effectiveness and advantages of the proposed hybrid design strategy via GA.</description><subject>Design optimization</subject><subject>Feedback control</subject><subject>genetic algorithm</subject><subject>Genetic algorithms</subject><subject>hidden Markov model</subject><subject>stochastic Markovian jump linear systems</subject><subject>Transition probabilities</subject><subject>transition probability matrix</subject><issn>1561-8625</issn><issn>1934-6093</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRSMEEqWw4A8ssWKR1naeXlYVTxV1AawjPyaNQxMH26VKf4DfJn1sWc1I98xc3RsEtwRPCMZ0yl0tJzSN2VkwIiyKwxSz6HzYk5SEeUqTy-DKuRrjlER5Mgp-l53Xjd6BQlUvrFZIgdOrFm21r5DzXOi13ul2hbzlrdNemxZ11oiD4HtUGjtgRlbceS3RG7df5kfzFtWbpkOudx4ahzatAosqrRS0JwY1RsHg5kF6Y6-Di5KvHdyc5jj4fHz4mD-Hi-XTy3y2CCVlGQsVTkXKsogKEeWQQ6kgK4FIIjIpc8EoUwIYZ5BEkcwGLVO4TERSpjHEJaPROLg7_h0yfG_A-aI2G9sOlgXNCKGU5Ek8UPdHSlrjnIWy6KxuuO0Lgot9z8W-52Lf88BOj-xWr6H_Hyxm76_zw8UfiP-EdQ</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Jia, Tinggang</creator><creator>Song, Jun</creator><creator>Niu, Yugang</creator><creator>Chen, Bei</creator><creator>Cao, Zhiru</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0003-4718-9835</orcidid><orcidid>https://orcid.org/0000-0002-3010-1879</orcidid></search><sort><creationdate>202209</creationdate><title>Optimized hybrid design with stabilizing transition probability for stochastic Markovian jump systems under hidden Markov mode detector</title><author>Jia, Tinggang ; Song, Jun ; Niu, Yugang ; Chen, Bei ; Cao, Zhiru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2979-d06b69732bb38e8efde7fe1c1b7cc8b929dbe9a9e533c7e7f7d0f5b5f64e4f923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Design optimization</topic><topic>Feedback control</topic><topic>genetic algorithm</topic><topic>Genetic algorithms</topic><topic>hidden Markov model</topic><topic>stochastic Markovian jump linear systems</topic><topic>Transition probabilities</topic><topic>transition probability matrix</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Tinggang</creatorcontrib><creatorcontrib>Song, Jun</creatorcontrib><creatorcontrib>Niu, Yugang</creatorcontrib><creatorcontrib>Chen, Bei</creatorcontrib><creatorcontrib>Cao, Zhiru</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Asian journal of control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Tinggang</au><au>Song, Jun</au><au>Niu, Yugang</au><au>Chen, Bei</au><au>Cao, Zhiru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimized hybrid design with stabilizing transition probability for stochastic Markovian jump systems under hidden Markov mode detector</atitle><jtitle>Asian journal of control</jtitle><date>2022-09</date><risdate>2022</risdate><volume>24</volume><issue>5</issue><spage>2787</spage><epage>2795</epage><pages>2787-2795</pages><issn>1561-8625</issn><eissn>1934-6093</eissn><abstract>The transition probability synthesis problem is addressed for discrete‐time Markovian jump linear system (MJLS) with state‐dependent multiplicative noises. The proposed mode‐dependent parametric approach is employed to derive the necessary and sufficient condition for ensuring the existence of the stabilizing transition probability matrix (TPM). A key feature here is that the system mode is considered to be unavailable to the controller but can just be observed via a hidden Markov mode detector. To this end, a hybrid design is developed by co‐designing the stabilizing TPM and the asynchronous mode‐dependent state‐feedback controller. A rank‐constrained nonconvex problem is formulated to solve the hybrid design strategy. Specifically, a binary genetic algorithm (GA) is introduced for overcoming the computation difficulties arising from searching optimized mode‐dependent parameters. Finally, two numerical examples are provided to verify the effectiveness and advantages of the proposed hybrid design strategy via GA.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/asjc.2649</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4718-9835</orcidid><orcidid>https://orcid.org/0000-0002-3010-1879</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1561-8625
ispartof Asian journal of control, 2022-09, Vol.24 (5), p.2787-2795
issn 1561-8625
1934-6093
language eng
recordid cdi_proquest_journals_2711221854
source Wiley Online Library Journals Frontfile Complete
subjects Design optimization
Feedback control
genetic algorithm
Genetic algorithms
hidden Markov model
stochastic Markovian jump linear systems
Transition probabilities
transition probability matrix
title Optimized hybrid design with stabilizing transition probability for stochastic Markovian jump systems under hidden Markov mode detector
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A09%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimized%20hybrid%20design%20with%20stabilizing%20transition%20probability%20for%20stochastic%20Markovian%20jump%20systems%20under%20hidden%20Markov%20mode%20detector&rft.jtitle=Asian%20journal%20of%20control&rft.au=Jia,%20Tinggang&rft.date=2022-09&rft.volume=24&rft.issue=5&rft.spage=2787&rft.epage=2795&rft.pages=2787-2795&rft.issn=1561-8625&rft.eissn=1934-6093&rft_id=info:doi/10.1002/asjc.2649&rft_dat=%3Cproquest_cross%3E2711221854%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2711221854&rft_id=info:pmid/&rfr_iscdi=true