Optimized hybrid design with stabilizing transition probability for stochastic Markovian jump systems under hidden Markov mode detector
The transition probability synthesis problem is addressed for discrete‐time Markovian jump linear system (MJLS) with state‐dependent multiplicative noises. The proposed mode‐dependent parametric approach is employed to derive the necessary and sufficient condition for ensuring the existence of the s...
Gespeichert in:
Veröffentlicht in: | Asian journal of control 2022-09, Vol.24 (5), p.2787-2795 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2795 |
---|---|
container_issue | 5 |
container_start_page | 2787 |
container_title | Asian journal of control |
container_volume | 24 |
creator | Jia, Tinggang Song, Jun Niu, Yugang Chen, Bei Cao, Zhiru |
description | The transition probability synthesis problem is addressed for discrete‐time Markovian jump linear system (MJLS) with state‐dependent multiplicative noises. The proposed mode‐dependent parametric approach is employed to derive the necessary and sufficient condition for ensuring the existence of the stabilizing transition probability matrix (TPM). A key feature here is that the system mode is considered to be unavailable to the controller but can just be observed via a hidden Markov mode detector. To this end, a hybrid design is developed by co‐designing the stabilizing TPM and the asynchronous mode‐dependent state‐feedback controller. A rank‐constrained nonconvex problem is formulated to solve the hybrid design strategy. Specifically, a binary genetic algorithm (GA) is introduced for overcoming the computation difficulties arising from searching optimized mode‐dependent parameters. Finally, two numerical examples are provided to verify the effectiveness and advantages of the proposed hybrid design strategy via GA. |
doi_str_mv | 10.1002/asjc.2649 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2711221854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2711221854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2979-d06b69732bb38e8efde7fe1c1b7cc8b929dbe9a9e533c7e7f7d0f5b5f64e4f923</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRSMEEqWw4A8ssWKR1naeXlYVTxV1AawjPyaNQxMH26VKf4DfJn1sWc1I98xc3RsEtwRPCMZ0yl0tJzSN2VkwIiyKwxSz6HzYk5SEeUqTy-DKuRrjlER5Mgp-l53Xjd6BQlUvrFZIgdOrFm21r5DzXOi13ul2hbzlrdNemxZ11oiD4HtUGjtgRlbceS3RG7df5kfzFtWbpkOudx4ahzatAosqrRS0JwY1RsHg5kF6Y6-Di5KvHdyc5jj4fHz4mD-Hi-XTy3y2CCVlGQsVTkXKsogKEeWQQ6kgK4FIIjIpc8EoUwIYZ5BEkcwGLVO4TERSpjHEJaPROLg7_h0yfG_A-aI2G9sOlgXNCKGU5Ek8UPdHSlrjnIWy6KxuuO0Lgot9z8W-52Lf88BOj-xWr6H_Hyxm76_zw8UfiP-EdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2711221854</pqid></control><display><type>article</type><title>Optimized hybrid design with stabilizing transition probability for stochastic Markovian jump systems under hidden Markov mode detector</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jia, Tinggang ; Song, Jun ; Niu, Yugang ; Chen, Bei ; Cao, Zhiru</creator><creatorcontrib>Jia, Tinggang ; Song, Jun ; Niu, Yugang ; Chen, Bei ; Cao, Zhiru</creatorcontrib><description>The transition probability synthesis problem is addressed for discrete‐time Markovian jump linear system (MJLS) with state‐dependent multiplicative noises. The proposed mode‐dependent parametric approach is employed to derive the necessary and sufficient condition for ensuring the existence of the stabilizing transition probability matrix (TPM). A key feature here is that the system mode is considered to be unavailable to the controller but can just be observed via a hidden Markov mode detector. To this end, a hybrid design is developed by co‐designing the stabilizing TPM and the asynchronous mode‐dependent state‐feedback controller. A rank‐constrained nonconvex problem is formulated to solve the hybrid design strategy. Specifically, a binary genetic algorithm (GA) is introduced for overcoming the computation difficulties arising from searching optimized mode‐dependent parameters. Finally, two numerical examples are provided to verify the effectiveness and advantages of the proposed hybrid design strategy via GA.</description><identifier>ISSN: 1561-8625</identifier><identifier>EISSN: 1934-6093</identifier><identifier>DOI: 10.1002/asjc.2649</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Design optimization ; Feedback control ; genetic algorithm ; Genetic algorithms ; hidden Markov model ; stochastic Markovian jump linear systems ; Transition probabilities ; transition probability matrix</subject><ispartof>Asian journal of control, 2022-09, Vol.24 (5), p.2787-2795</ispartof><rights>2021 Chinese Automatic Control Society and John Wiley & Sons Australia, Ltd</rights><rights>2022 Chinese Automatic Control Society and John Wiley & Sons Australia, Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2979-d06b69732bb38e8efde7fe1c1b7cc8b929dbe9a9e533c7e7f7d0f5b5f64e4f923</citedby><cites>FETCH-LOGICAL-c2979-d06b69732bb38e8efde7fe1c1b7cc8b929dbe9a9e533c7e7f7d0f5b5f64e4f923</cites><orcidid>0000-0003-4718-9835 ; 0000-0002-3010-1879</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fasjc.2649$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fasjc.2649$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Jia, Tinggang</creatorcontrib><creatorcontrib>Song, Jun</creatorcontrib><creatorcontrib>Niu, Yugang</creatorcontrib><creatorcontrib>Chen, Bei</creatorcontrib><creatorcontrib>Cao, Zhiru</creatorcontrib><title>Optimized hybrid design with stabilizing transition probability for stochastic Markovian jump systems under hidden Markov mode detector</title><title>Asian journal of control</title><description>The transition probability synthesis problem is addressed for discrete‐time Markovian jump linear system (MJLS) with state‐dependent multiplicative noises. The proposed mode‐dependent parametric approach is employed to derive the necessary and sufficient condition for ensuring the existence of the stabilizing transition probability matrix (TPM). A key feature here is that the system mode is considered to be unavailable to the controller but can just be observed via a hidden Markov mode detector. To this end, a hybrid design is developed by co‐designing the stabilizing TPM and the asynchronous mode‐dependent state‐feedback controller. A rank‐constrained nonconvex problem is formulated to solve the hybrid design strategy. Specifically, a binary genetic algorithm (GA) is introduced for overcoming the computation difficulties arising from searching optimized mode‐dependent parameters. Finally, two numerical examples are provided to verify the effectiveness and advantages of the proposed hybrid design strategy via GA.</description><subject>Design optimization</subject><subject>Feedback control</subject><subject>genetic algorithm</subject><subject>Genetic algorithms</subject><subject>hidden Markov model</subject><subject>stochastic Markovian jump linear systems</subject><subject>Transition probabilities</subject><subject>transition probability matrix</subject><issn>1561-8625</issn><issn>1934-6093</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRSMEEqWw4A8ssWKR1naeXlYVTxV1AawjPyaNQxMH26VKf4DfJn1sWc1I98xc3RsEtwRPCMZ0yl0tJzSN2VkwIiyKwxSz6HzYk5SEeUqTy-DKuRrjlER5Mgp-l53Xjd6BQlUvrFZIgdOrFm21r5DzXOi13ul2hbzlrdNemxZ11oiD4HtUGjtgRlbceS3RG7df5kfzFtWbpkOudx4ahzatAosqrRS0JwY1RsHg5kF6Y6-Di5KvHdyc5jj4fHz4mD-Hi-XTy3y2CCVlGQsVTkXKsogKEeWQQ6kgK4FIIjIpc8EoUwIYZ5BEkcwGLVO4TERSpjHEJaPROLg7_h0yfG_A-aI2G9sOlgXNCKGU5Ek8UPdHSlrjnIWy6KxuuO0Lgot9z8W-52Lf88BOj-xWr6H_Hyxm76_zw8UfiP-EdQ</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Jia, Tinggang</creator><creator>Song, Jun</creator><creator>Niu, Yugang</creator><creator>Chen, Bei</creator><creator>Cao, Zhiru</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0003-4718-9835</orcidid><orcidid>https://orcid.org/0000-0002-3010-1879</orcidid></search><sort><creationdate>202209</creationdate><title>Optimized hybrid design with stabilizing transition probability for stochastic Markovian jump systems under hidden Markov mode detector</title><author>Jia, Tinggang ; Song, Jun ; Niu, Yugang ; Chen, Bei ; Cao, Zhiru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2979-d06b69732bb38e8efde7fe1c1b7cc8b929dbe9a9e533c7e7f7d0f5b5f64e4f923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Design optimization</topic><topic>Feedback control</topic><topic>genetic algorithm</topic><topic>Genetic algorithms</topic><topic>hidden Markov model</topic><topic>stochastic Markovian jump linear systems</topic><topic>Transition probabilities</topic><topic>transition probability matrix</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Tinggang</creatorcontrib><creatorcontrib>Song, Jun</creatorcontrib><creatorcontrib>Niu, Yugang</creatorcontrib><creatorcontrib>Chen, Bei</creatorcontrib><creatorcontrib>Cao, Zhiru</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Asian journal of control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Tinggang</au><au>Song, Jun</au><au>Niu, Yugang</au><au>Chen, Bei</au><au>Cao, Zhiru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimized hybrid design with stabilizing transition probability for stochastic Markovian jump systems under hidden Markov mode detector</atitle><jtitle>Asian journal of control</jtitle><date>2022-09</date><risdate>2022</risdate><volume>24</volume><issue>5</issue><spage>2787</spage><epage>2795</epage><pages>2787-2795</pages><issn>1561-8625</issn><eissn>1934-6093</eissn><abstract>The transition probability synthesis problem is addressed for discrete‐time Markovian jump linear system (MJLS) with state‐dependent multiplicative noises. The proposed mode‐dependent parametric approach is employed to derive the necessary and sufficient condition for ensuring the existence of the stabilizing transition probability matrix (TPM). A key feature here is that the system mode is considered to be unavailable to the controller but can just be observed via a hidden Markov mode detector. To this end, a hybrid design is developed by co‐designing the stabilizing TPM and the asynchronous mode‐dependent state‐feedback controller. A rank‐constrained nonconvex problem is formulated to solve the hybrid design strategy. Specifically, a binary genetic algorithm (GA) is introduced for overcoming the computation difficulties arising from searching optimized mode‐dependent parameters. Finally, two numerical examples are provided to verify the effectiveness and advantages of the proposed hybrid design strategy via GA.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/asjc.2649</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4718-9835</orcidid><orcidid>https://orcid.org/0000-0002-3010-1879</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1561-8625 |
ispartof | Asian journal of control, 2022-09, Vol.24 (5), p.2787-2795 |
issn | 1561-8625 1934-6093 |
language | eng |
recordid | cdi_proquest_journals_2711221854 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Design optimization Feedback control genetic algorithm Genetic algorithms hidden Markov model stochastic Markovian jump linear systems Transition probabilities transition probability matrix |
title | Optimized hybrid design with stabilizing transition probability for stochastic Markovian jump systems under hidden Markov mode detector |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A09%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimized%20hybrid%20design%20with%20stabilizing%20transition%20probability%20for%20stochastic%20Markovian%20jump%20systems%20under%20hidden%20Markov%20mode%20detector&rft.jtitle=Asian%20journal%20of%20control&rft.au=Jia,%20Tinggang&rft.date=2022-09&rft.volume=24&rft.issue=5&rft.spage=2787&rft.epage=2795&rft.pages=2787-2795&rft.issn=1561-8625&rft.eissn=1934-6093&rft_id=info:doi/10.1002/asjc.2649&rft_dat=%3Cproquest_cross%3E2711221854%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2711221854&rft_id=info:pmid/&rfr_iscdi=true |