Ultrahigh Sulfur Loading Tolerant Cathode Architecture with Extended Cycle Life for High Energy Density Lithium–Sulfur Batteries
Lithium–sulfur batteries are regarded as the imminent energy storage device for high energy density applications. However, at practical sulfur loadings >5 mg cm−2, the cell suffers from severe capacity fade and durability. In the present work, a hybrid MoS2–WS2 heterodimensional structure is repo...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2022-09, Vol.12 (34), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 34 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 12 |
creator | Abraham, Akhil Mammoottil Thiel, Karsten Shakouri, Mohsen Xiao, Qunfeng Paterson, Alisa Schwenzel, Julian Ponnurangam, Sathish Thangadurai, Venkataraman |
description | Lithium–sulfur batteries are regarded as the imminent energy storage device for high energy density applications. However, at practical sulfur loadings >5 mg cm−2, the cell suffers from severe capacity fade and durability. In the present work, a hybrid MoS2–WS2 heterodimensional structure is reported. The strain induced growth of transition metal dichalcogenides preferentially exposes edge sites and maximizes the geometric coverage for anchoring‐diffusion‐conversion of polysulfides to restrain the shuttle effect at practical S‐loadings. The systematic analysis (5–50 mg cm−2 of S‐loadings) reveals that the unique cathode architecture exhibits reversible S‐loading tolerance up to 28 mg cm−2. A high initial areal capacity of 32 mAh cm−2 with an area specific energy density of 67 mWh cm−2 is achieved with a low electrolyte volume/S‐loading ratio of 5 mL g−1. The strategy presented here can unlock high S‐loading Li–S cells with extended cyclability and high energy density.
Practical lithium–sulfur batteries require a high sulfur loading (>5 mg cm−2), extended rate performance and cyclability. A hybrid MoS2–WS2 heterostructure that increases the sulfur loading up to 28 mg cm−2 with an area specific capacity and energy density of 32 mAh cm−2 and 67 mWh cm−2, respectively, is reported. The electrode demonstrates good electrode stability and cyclability. |
doi_str_mv | 10.1002/aenm.202201494 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2711156812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2711156812</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3174-c7edef074b0ec67385928f38f8eb65941760cb7d680fcdf9d0d1b93403a0f1713</originalsourceid><addsrcrecordid>eNqFkL1OwzAQxy0EElXpymyJOcWO3XyMJRSKFGCgnSPHPjeu0qQ4jko2xCvwhjwJqVqVkVvupPt_SD-ErikZU0L8WwHVZuwT3yeUx_wMDWhAuRdEnJyfbuZfolHTrEk_PKaEsQH6WpbOisKsCvzWlrq1OK2FMtUKL-oSrKgcToQragV4amVhHEjXWsA74wo8-3BQKVA46WQJODUasK4tnu_jZhXYVYfvoWqM6_qnK0y7-fn8PvbcCefAGmiu0IUWZQOj4x6i5cNskcy99PXxKZmmnmQ05J4MQYEmIc8JyCBk0ST2I80iHUEeTGJOw4DIPFRBRLRUOlZE0TxmnDBBNA0pG6KbQ-7W1u8tNC5b162t-srMDymlkyCifq8aH1TS1k1jQWdbazbCdhkl2R51tkednVD3hvhg2JkSun_U2XT28vzn_QWAIYS8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2711156812</pqid></control><display><type>article</type><title>Ultrahigh Sulfur Loading Tolerant Cathode Architecture with Extended Cycle Life for High Energy Density Lithium–Sulfur Batteries</title><source>Wiley-Blackwell Journals</source><creator>Abraham, Akhil Mammoottil ; Thiel, Karsten ; Shakouri, Mohsen ; Xiao, Qunfeng ; Paterson, Alisa ; Schwenzel, Julian ; Ponnurangam, Sathish ; Thangadurai, Venkataraman</creator><creatorcontrib>Abraham, Akhil Mammoottil ; Thiel, Karsten ; Shakouri, Mohsen ; Xiao, Qunfeng ; Paterson, Alisa ; Schwenzel, Julian ; Ponnurangam, Sathish ; Thangadurai, Venkataraman</creatorcontrib><description>Lithium–sulfur batteries are regarded as the imminent energy storage device for high energy density applications. However, at practical sulfur loadings >5 mg cm−2, the cell suffers from severe capacity fade and durability. In the present work, a hybrid MoS2–WS2 heterodimensional structure is reported. The strain induced growth of transition metal dichalcogenides preferentially exposes edge sites and maximizes the geometric coverage for anchoring‐diffusion‐conversion of polysulfides to restrain the shuttle effect at practical S‐loadings. The systematic analysis (5–50 mg cm−2 of S‐loadings) reveals that the unique cathode architecture exhibits reversible S‐loading tolerance up to 28 mg cm−2. A high initial areal capacity of 32 mAh cm−2 with an area specific energy density of 67 mWh cm−2 is achieved with a low electrolyte volume/S‐loading ratio of 5 mL g−1. The strategy presented here can unlock high S‐loading Li–S cells with extended cyclability and high energy density.
Practical lithium–sulfur batteries require a high sulfur loading (>5 mg cm−2), extended rate performance and cyclability. A hybrid MoS2–WS2 heterostructure that increases the sulfur loading up to 28 mg cm−2 with an area specific capacity and energy density of 32 mAh cm−2 and 67 mWh cm−2, respectively, is reported. The electrode demonstrates good electrode stability and cyclability.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202201494</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Cathodes ; Electrolytic cells ; Energy storage ; expansion tolerant cathodes ; high areal capacity ; high energy density ; lean electrolyte ; Lithium sulfur batteries ; Specific energy ; Storage batteries ; Transition metal compounds ; ultrahigh sulfur loading</subject><ispartof>Advanced energy materials, 2022-09, Vol.12 (34), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3174-c7edef074b0ec67385928f38f8eb65941760cb7d680fcdf9d0d1b93403a0f1713</citedby><cites>FETCH-LOGICAL-c3174-c7edef074b0ec67385928f38f8eb65941760cb7d680fcdf9d0d1b93403a0f1713</cites><orcidid>0000-0001-6038-0517 ; 0000-0001-6256-6307</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202201494$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202201494$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Abraham, Akhil Mammoottil</creatorcontrib><creatorcontrib>Thiel, Karsten</creatorcontrib><creatorcontrib>Shakouri, Mohsen</creatorcontrib><creatorcontrib>Xiao, Qunfeng</creatorcontrib><creatorcontrib>Paterson, Alisa</creatorcontrib><creatorcontrib>Schwenzel, Julian</creatorcontrib><creatorcontrib>Ponnurangam, Sathish</creatorcontrib><creatorcontrib>Thangadurai, Venkataraman</creatorcontrib><title>Ultrahigh Sulfur Loading Tolerant Cathode Architecture with Extended Cycle Life for High Energy Density Lithium–Sulfur Batteries</title><title>Advanced energy materials</title><description>Lithium–sulfur batteries are regarded as the imminent energy storage device for high energy density applications. However, at practical sulfur loadings >5 mg cm−2, the cell suffers from severe capacity fade and durability. In the present work, a hybrid MoS2–WS2 heterodimensional structure is reported. The strain induced growth of transition metal dichalcogenides preferentially exposes edge sites and maximizes the geometric coverage for anchoring‐diffusion‐conversion of polysulfides to restrain the shuttle effect at practical S‐loadings. The systematic analysis (5–50 mg cm−2 of S‐loadings) reveals that the unique cathode architecture exhibits reversible S‐loading tolerance up to 28 mg cm−2. A high initial areal capacity of 32 mAh cm−2 with an area specific energy density of 67 mWh cm−2 is achieved with a low electrolyte volume/S‐loading ratio of 5 mL g−1. The strategy presented here can unlock high S‐loading Li–S cells with extended cyclability and high energy density.
Practical lithium–sulfur batteries require a high sulfur loading (>5 mg cm−2), extended rate performance and cyclability. A hybrid MoS2–WS2 heterostructure that increases the sulfur loading up to 28 mg cm−2 with an area specific capacity and energy density of 32 mAh cm−2 and 67 mWh cm−2, respectively, is reported. The electrode demonstrates good electrode stability and cyclability.</description><subject>Cathodes</subject><subject>Electrolytic cells</subject><subject>Energy storage</subject><subject>expansion tolerant cathodes</subject><subject>high areal capacity</subject><subject>high energy density</subject><subject>lean electrolyte</subject><subject>Lithium sulfur batteries</subject><subject>Specific energy</subject><subject>Storage batteries</subject><subject>Transition metal compounds</subject><subject>ultrahigh sulfur loading</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAQxy0EElXpymyJOcWO3XyMJRSKFGCgnSPHPjeu0qQ4jko2xCvwhjwJqVqVkVvupPt_SD-ErikZU0L8WwHVZuwT3yeUx_wMDWhAuRdEnJyfbuZfolHTrEk_PKaEsQH6WpbOisKsCvzWlrq1OK2FMtUKL-oSrKgcToQragV4amVhHEjXWsA74wo8-3BQKVA46WQJODUasK4tnu_jZhXYVYfvoWqM6_qnK0y7-fn8PvbcCefAGmiu0IUWZQOj4x6i5cNskcy99PXxKZmmnmQ05J4MQYEmIc8JyCBk0ST2I80iHUEeTGJOw4DIPFRBRLRUOlZE0TxmnDBBNA0pG6KbQ-7W1u8tNC5b162t-srMDymlkyCifq8aH1TS1k1jQWdbazbCdhkl2R51tkednVD3hvhg2JkSun_U2XT28vzn_QWAIYS8</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Abraham, Akhil Mammoottil</creator><creator>Thiel, Karsten</creator><creator>Shakouri, Mohsen</creator><creator>Xiao, Qunfeng</creator><creator>Paterson, Alisa</creator><creator>Schwenzel, Julian</creator><creator>Ponnurangam, Sathish</creator><creator>Thangadurai, Venkataraman</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6038-0517</orcidid><orcidid>https://orcid.org/0000-0001-6256-6307</orcidid></search><sort><creationdate>20220901</creationdate><title>Ultrahigh Sulfur Loading Tolerant Cathode Architecture with Extended Cycle Life for High Energy Density Lithium–Sulfur Batteries</title><author>Abraham, Akhil Mammoottil ; Thiel, Karsten ; Shakouri, Mohsen ; Xiao, Qunfeng ; Paterson, Alisa ; Schwenzel, Julian ; Ponnurangam, Sathish ; Thangadurai, Venkataraman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3174-c7edef074b0ec67385928f38f8eb65941760cb7d680fcdf9d0d1b93403a0f1713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cathodes</topic><topic>Electrolytic cells</topic><topic>Energy storage</topic><topic>expansion tolerant cathodes</topic><topic>high areal capacity</topic><topic>high energy density</topic><topic>lean electrolyte</topic><topic>Lithium sulfur batteries</topic><topic>Specific energy</topic><topic>Storage batteries</topic><topic>Transition metal compounds</topic><topic>ultrahigh sulfur loading</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abraham, Akhil Mammoottil</creatorcontrib><creatorcontrib>Thiel, Karsten</creatorcontrib><creatorcontrib>Shakouri, Mohsen</creatorcontrib><creatorcontrib>Xiao, Qunfeng</creatorcontrib><creatorcontrib>Paterson, Alisa</creatorcontrib><creatorcontrib>Schwenzel, Julian</creatorcontrib><creatorcontrib>Ponnurangam, Sathish</creatorcontrib><creatorcontrib>Thangadurai, Venkataraman</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abraham, Akhil Mammoottil</au><au>Thiel, Karsten</au><au>Shakouri, Mohsen</au><au>Xiao, Qunfeng</au><au>Paterson, Alisa</au><au>Schwenzel, Julian</au><au>Ponnurangam, Sathish</au><au>Thangadurai, Venkataraman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrahigh Sulfur Loading Tolerant Cathode Architecture with Extended Cycle Life for High Energy Density Lithium–Sulfur Batteries</atitle><jtitle>Advanced energy materials</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>12</volume><issue>34</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Lithium–sulfur batteries are regarded as the imminent energy storage device for high energy density applications. However, at practical sulfur loadings >5 mg cm−2, the cell suffers from severe capacity fade and durability. In the present work, a hybrid MoS2–WS2 heterodimensional structure is reported. The strain induced growth of transition metal dichalcogenides preferentially exposes edge sites and maximizes the geometric coverage for anchoring‐diffusion‐conversion of polysulfides to restrain the shuttle effect at practical S‐loadings. The systematic analysis (5–50 mg cm−2 of S‐loadings) reveals that the unique cathode architecture exhibits reversible S‐loading tolerance up to 28 mg cm−2. A high initial areal capacity of 32 mAh cm−2 with an area specific energy density of 67 mWh cm−2 is achieved with a low electrolyte volume/S‐loading ratio of 5 mL g−1. The strategy presented here can unlock high S‐loading Li–S cells with extended cyclability and high energy density.
Practical lithium–sulfur batteries require a high sulfur loading (>5 mg cm−2), extended rate performance and cyclability. A hybrid MoS2–WS2 heterostructure that increases the sulfur loading up to 28 mg cm−2 with an area specific capacity and energy density of 32 mAh cm−2 and 67 mWh cm−2, respectively, is reported. The electrode demonstrates good electrode stability and cyclability.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202201494</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-6038-0517</orcidid><orcidid>https://orcid.org/0000-0001-6256-6307</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2022-09, Vol.12 (34), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_proquest_journals_2711156812 |
source | Wiley-Blackwell Journals |
subjects | Cathodes Electrolytic cells Energy storage expansion tolerant cathodes high areal capacity high energy density lean electrolyte Lithium sulfur batteries Specific energy Storage batteries Transition metal compounds ultrahigh sulfur loading |
title | Ultrahigh Sulfur Loading Tolerant Cathode Architecture with Extended Cycle Life for High Energy Density Lithium–Sulfur Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T06%3A42%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrahigh%20Sulfur%20Loading%20Tolerant%20Cathode%20Architecture%20with%20Extended%20Cycle%20Life%20for%20High%20Energy%20Density%20Lithium%E2%80%93Sulfur%20Batteries&rft.jtitle=Advanced%20energy%20materials&rft.au=Abraham,%20Akhil%20Mammoottil&rft.date=2022-09-01&rft.volume=12&rft.issue=34&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202201494&rft_dat=%3Cproquest_cross%3E2711156812%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2711156812&rft_id=info:pmid/&rfr_iscdi=true |