Ultrahigh Sulfur Loading Tolerant Cathode Architecture with Extended Cycle Life for High Energy Density Lithium–Sulfur Batteries

Lithium–sulfur batteries are regarded as the imminent energy storage device for high energy density applications. However, at practical sulfur loadings >5 mg cm−2, the cell suffers from severe capacity fade and durability. In the present work, a hybrid MoS2–WS2 heterodimensional structure is repo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2022-09, Vol.12 (34), p.n/a
Hauptverfasser: Abraham, Akhil Mammoottil, Thiel, Karsten, Shakouri, Mohsen, Xiao, Qunfeng, Paterson, Alisa, Schwenzel, Julian, Ponnurangam, Sathish, Thangadurai, Venkataraman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 34
container_start_page
container_title Advanced energy materials
container_volume 12
creator Abraham, Akhil Mammoottil
Thiel, Karsten
Shakouri, Mohsen
Xiao, Qunfeng
Paterson, Alisa
Schwenzel, Julian
Ponnurangam, Sathish
Thangadurai, Venkataraman
description Lithium–sulfur batteries are regarded as the imminent energy storage device for high energy density applications. However, at practical sulfur loadings >5 mg cm−2, the cell suffers from severe capacity fade and durability. In the present work, a hybrid MoS2–WS2 heterodimensional structure is reported. The strain induced growth of transition metal dichalcogenides preferentially exposes edge sites and maximizes the geometric coverage for anchoring‐diffusion‐conversion of polysulfides to restrain the shuttle effect at practical S‐loadings. The systematic analysis (5–50 mg cm−2 of S‐loadings) reveals that the unique cathode architecture exhibits reversible S‐loading tolerance up to 28 mg cm−2. A high initial areal capacity of 32 mAh cm−2 with an area specific energy density of 67 mWh cm−2 is achieved with a low electrolyte volume/S‐loading ratio of 5 mL g−1. The strategy presented here can unlock high S‐loading Li–S cells with extended cyclability and high energy density. Practical lithium–sulfur batteries require a high sulfur loading (>5 mg cm−2), extended rate performance and cyclability. A hybrid MoS2–WS2 heterostructure that increases the sulfur loading up to 28 mg cm−2 with an area specific capacity and energy density of 32 mAh cm−2 and 67 mWh cm−2, respectively, is reported. The electrode demonstrates good electrode stability and cyclability.
doi_str_mv 10.1002/aenm.202201494
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2711156812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2711156812</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3174-c7edef074b0ec67385928f38f8eb65941760cb7d680fcdf9d0d1b93403a0f1713</originalsourceid><addsrcrecordid>eNqFkL1OwzAQxy0EElXpymyJOcWO3XyMJRSKFGCgnSPHPjeu0qQ4jko2xCvwhjwJqVqVkVvupPt_SD-ErikZU0L8WwHVZuwT3yeUx_wMDWhAuRdEnJyfbuZfolHTrEk_PKaEsQH6WpbOisKsCvzWlrq1OK2FMtUKL-oSrKgcToQragV4amVhHEjXWsA74wo8-3BQKVA46WQJODUasK4tnu_jZhXYVYfvoWqM6_qnK0y7-fn8PvbcCefAGmiu0IUWZQOj4x6i5cNskcy99PXxKZmmnmQ05J4MQYEmIc8JyCBk0ST2I80iHUEeTGJOw4DIPFRBRLRUOlZE0TxmnDBBNA0pG6KbQ-7W1u8tNC5b162t-srMDymlkyCifq8aH1TS1k1jQWdbazbCdhkl2R51tkednVD3hvhg2JkSun_U2XT28vzn_QWAIYS8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2711156812</pqid></control><display><type>article</type><title>Ultrahigh Sulfur Loading Tolerant Cathode Architecture with Extended Cycle Life for High Energy Density Lithium–Sulfur Batteries</title><source>Wiley-Blackwell Journals</source><creator>Abraham, Akhil Mammoottil ; Thiel, Karsten ; Shakouri, Mohsen ; Xiao, Qunfeng ; Paterson, Alisa ; Schwenzel, Julian ; Ponnurangam, Sathish ; Thangadurai, Venkataraman</creator><creatorcontrib>Abraham, Akhil Mammoottil ; Thiel, Karsten ; Shakouri, Mohsen ; Xiao, Qunfeng ; Paterson, Alisa ; Schwenzel, Julian ; Ponnurangam, Sathish ; Thangadurai, Venkataraman</creatorcontrib><description>Lithium–sulfur batteries are regarded as the imminent energy storage device for high energy density applications. However, at practical sulfur loadings &gt;5 mg cm−2, the cell suffers from severe capacity fade and durability. In the present work, a hybrid MoS2–WS2 heterodimensional structure is reported. The strain induced growth of transition metal dichalcogenides preferentially exposes edge sites and maximizes the geometric coverage for anchoring‐diffusion‐conversion of polysulfides to restrain the shuttle effect at practical S‐loadings. The systematic analysis (5–50 mg cm−2 of S‐loadings) reveals that the unique cathode architecture exhibits reversible S‐loading tolerance up to 28 mg cm−2. A high initial areal capacity of 32 mAh cm−2 with an area specific energy density of 67 mWh cm−2 is achieved with a low electrolyte volume/S‐loading ratio of 5 mL g−1. The strategy presented here can unlock high S‐loading Li–S cells with extended cyclability and high energy density. Practical lithium–sulfur batteries require a high sulfur loading (&gt;5 mg cm−2), extended rate performance and cyclability. A hybrid MoS2–WS2 heterostructure that increases the sulfur loading up to 28 mg cm−2 with an area specific capacity and energy density of 32 mAh cm−2 and 67 mWh cm−2, respectively, is reported. The electrode demonstrates good electrode stability and cyclability.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202201494</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Cathodes ; Electrolytic cells ; Energy storage ; expansion tolerant cathodes ; high areal capacity ; high energy density ; lean electrolyte ; Lithium sulfur batteries ; Specific energy ; Storage batteries ; Transition metal compounds ; ultrahigh sulfur loading</subject><ispartof>Advanced energy materials, 2022-09, Vol.12 (34), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3174-c7edef074b0ec67385928f38f8eb65941760cb7d680fcdf9d0d1b93403a0f1713</citedby><cites>FETCH-LOGICAL-c3174-c7edef074b0ec67385928f38f8eb65941760cb7d680fcdf9d0d1b93403a0f1713</cites><orcidid>0000-0001-6038-0517 ; 0000-0001-6256-6307</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202201494$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202201494$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Abraham, Akhil Mammoottil</creatorcontrib><creatorcontrib>Thiel, Karsten</creatorcontrib><creatorcontrib>Shakouri, Mohsen</creatorcontrib><creatorcontrib>Xiao, Qunfeng</creatorcontrib><creatorcontrib>Paterson, Alisa</creatorcontrib><creatorcontrib>Schwenzel, Julian</creatorcontrib><creatorcontrib>Ponnurangam, Sathish</creatorcontrib><creatorcontrib>Thangadurai, Venkataraman</creatorcontrib><title>Ultrahigh Sulfur Loading Tolerant Cathode Architecture with Extended Cycle Life for High Energy Density Lithium–Sulfur Batteries</title><title>Advanced energy materials</title><description>Lithium–sulfur batteries are regarded as the imminent energy storage device for high energy density applications. However, at practical sulfur loadings &gt;5 mg cm−2, the cell suffers from severe capacity fade and durability. In the present work, a hybrid MoS2–WS2 heterodimensional structure is reported. The strain induced growth of transition metal dichalcogenides preferentially exposes edge sites and maximizes the geometric coverage for anchoring‐diffusion‐conversion of polysulfides to restrain the shuttle effect at practical S‐loadings. The systematic analysis (5–50 mg cm−2 of S‐loadings) reveals that the unique cathode architecture exhibits reversible S‐loading tolerance up to 28 mg cm−2. A high initial areal capacity of 32 mAh cm−2 with an area specific energy density of 67 mWh cm−2 is achieved with a low electrolyte volume/S‐loading ratio of 5 mL g−1. The strategy presented here can unlock high S‐loading Li–S cells with extended cyclability and high energy density. Practical lithium–sulfur batteries require a high sulfur loading (&gt;5 mg cm−2), extended rate performance and cyclability. A hybrid MoS2–WS2 heterostructure that increases the sulfur loading up to 28 mg cm−2 with an area specific capacity and energy density of 32 mAh cm−2 and 67 mWh cm−2, respectively, is reported. The electrode demonstrates good electrode stability and cyclability.</description><subject>Cathodes</subject><subject>Electrolytic cells</subject><subject>Energy storage</subject><subject>expansion tolerant cathodes</subject><subject>high areal capacity</subject><subject>high energy density</subject><subject>lean electrolyte</subject><subject>Lithium sulfur batteries</subject><subject>Specific energy</subject><subject>Storage batteries</subject><subject>Transition metal compounds</subject><subject>ultrahigh sulfur loading</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAQxy0EElXpymyJOcWO3XyMJRSKFGCgnSPHPjeu0qQ4jko2xCvwhjwJqVqVkVvupPt_SD-ErikZU0L8WwHVZuwT3yeUx_wMDWhAuRdEnJyfbuZfolHTrEk_PKaEsQH6WpbOisKsCvzWlrq1OK2FMtUKL-oSrKgcToQragV4amVhHEjXWsA74wo8-3BQKVA46WQJODUasK4tnu_jZhXYVYfvoWqM6_qnK0y7-fn8PvbcCefAGmiu0IUWZQOj4x6i5cNskcy99PXxKZmmnmQ05J4MQYEmIc8JyCBk0ST2I80iHUEeTGJOw4DIPFRBRLRUOlZE0TxmnDBBNA0pG6KbQ-7W1u8tNC5b162t-srMDymlkyCifq8aH1TS1k1jQWdbazbCdhkl2R51tkednVD3hvhg2JkSun_U2XT28vzn_QWAIYS8</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Abraham, Akhil Mammoottil</creator><creator>Thiel, Karsten</creator><creator>Shakouri, Mohsen</creator><creator>Xiao, Qunfeng</creator><creator>Paterson, Alisa</creator><creator>Schwenzel, Julian</creator><creator>Ponnurangam, Sathish</creator><creator>Thangadurai, Venkataraman</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6038-0517</orcidid><orcidid>https://orcid.org/0000-0001-6256-6307</orcidid></search><sort><creationdate>20220901</creationdate><title>Ultrahigh Sulfur Loading Tolerant Cathode Architecture with Extended Cycle Life for High Energy Density Lithium–Sulfur Batteries</title><author>Abraham, Akhil Mammoottil ; Thiel, Karsten ; Shakouri, Mohsen ; Xiao, Qunfeng ; Paterson, Alisa ; Schwenzel, Julian ; Ponnurangam, Sathish ; Thangadurai, Venkataraman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3174-c7edef074b0ec67385928f38f8eb65941760cb7d680fcdf9d0d1b93403a0f1713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cathodes</topic><topic>Electrolytic cells</topic><topic>Energy storage</topic><topic>expansion tolerant cathodes</topic><topic>high areal capacity</topic><topic>high energy density</topic><topic>lean electrolyte</topic><topic>Lithium sulfur batteries</topic><topic>Specific energy</topic><topic>Storage batteries</topic><topic>Transition metal compounds</topic><topic>ultrahigh sulfur loading</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abraham, Akhil Mammoottil</creatorcontrib><creatorcontrib>Thiel, Karsten</creatorcontrib><creatorcontrib>Shakouri, Mohsen</creatorcontrib><creatorcontrib>Xiao, Qunfeng</creatorcontrib><creatorcontrib>Paterson, Alisa</creatorcontrib><creatorcontrib>Schwenzel, Julian</creatorcontrib><creatorcontrib>Ponnurangam, Sathish</creatorcontrib><creatorcontrib>Thangadurai, Venkataraman</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abraham, Akhil Mammoottil</au><au>Thiel, Karsten</au><au>Shakouri, Mohsen</au><au>Xiao, Qunfeng</au><au>Paterson, Alisa</au><au>Schwenzel, Julian</au><au>Ponnurangam, Sathish</au><au>Thangadurai, Venkataraman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrahigh Sulfur Loading Tolerant Cathode Architecture with Extended Cycle Life for High Energy Density Lithium–Sulfur Batteries</atitle><jtitle>Advanced energy materials</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>12</volume><issue>34</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Lithium–sulfur batteries are regarded as the imminent energy storage device for high energy density applications. However, at practical sulfur loadings &gt;5 mg cm−2, the cell suffers from severe capacity fade and durability. In the present work, a hybrid MoS2–WS2 heterodimensional structure is reported. The strain induced growth of transition metal dichalcogenides preferentially exposes edge sites and maximizes the geometric coverage for anchoring‐diffusion‐conversion of polysulfides to restrain the shuttle effect at practical S‐loadings. The systematic analysis (5–50 mg cm−2 of S‐loadings) reveals that the unique cathode architecture exhibits reversible S‐loading tolerance up to 28 mg cm−2. A high initial areal capacity of 32 mAh cm−2 with an area specific energy density of 67 mWh cm−2 is achieved with a low electrolyte volume/S‐loading ratio of 5 mL g−1. The strategy presented here can unlock high S‐loading Li–S cells with extended cyclability and high energy density. Practical lithium–sulfur batteries require a high sulfur loading (&gt;5 mg cm−2), extended rate performance and cyclability. A hybrid MoS2–WS2 heterostructure that increases the sulfur loading up to 28 mg cm−2 with an area specific capacity and energy density of 32 mAh cm−2 and 67 mWh cm−2, respectively, is reported. The electrode demonstrates good electrode stability and cyclability.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202201494</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-6038-0517</orcidid><orcidid>https://orcid.org/0000-0001-6256-6307</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2022-09, Vol.12 (34), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2711156812
source Wiley-Blackwell Journals
subjects Cathodes
Electrolytic cells
Energy storage
expansion tolerant cathodes
high areal capacity
high energy density
lean electrolyte
Lithium sulfur batteries
Specific energy
Storage batteries
Transition metal compounds
ultrahigh sulfur loading
title Ultrahigh Sulfur Loading Tolerant Cathode Architecture with Extended Cycle Life for High Energy Density Lithium–Sulfur Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T06%3A42%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrahigh%20Sulfur%20Loading%20Tolerant%20Cathode%20Architecture%20with%20Extended%20Cycle%20Life%20for%20High%20Energy%20Density%20Lithium%E2%80%93Sulfur%20Batteries&rft.jtitle=Advanced%20energy%20materials&rft.au=Abraham,%20Akhil%20Mammoottil&rft.date=2022-09-01&rft.volume=12&rft.issue=34&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202201494&rft_dat=%3Cproquest_cross%3E2711156812%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2711156812&rft_id=info:pmid/&rfr_iscdi=true