Elucidation of the Mechanism and Kinetics of Ultrasonic Extraction of Paclitaxel from Plant Cell Cultures of Taxus chinensis
In this study, the kinetics and mechanism of ultrasonic extraction of paclitaxel from Taxus chinensis were analyzed using ultrasonic cavitation bubbles and gas bubbles. The resulting paclitaxel yields (after one-time extraction) were 62–99% at ultrasonic power of 80–380 W in ultrasonic extraction an...
Gespeichert in:
Veröffentlicht in: | Biotechnology and bioprocess engineering 2022-08, Vol.27 (4), p.668-677 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 677 |
---|---|
container_issue | 4 |
container_start_page | 668 |
container_title | Biotechnology and bioprocess engineering |
container_volume | 27 |
creator | Kim, Hak-Gyun Kim, Jin-Hyun |
description | In this study, the kinetics and mechanism of ultrasonic extraction of paclitaxel from
Taxus chinensis
were analyzed using ultrasonic cavitation bubbles and gas bubbles. The resulting paclitaxel yields (after one-time extraction) were 62–99% at ultrasonic power of 80–380 W in ultrasonic extraction and 61–76% at gas flow rate of 0.185–1.75 L/min in extraction using gas bubbles. These results show improvements from the yield obtained using conventional extraction (58%). As the ultrasonic power and gas flow rate increased, the extraction rate constant (3.0263–6.6028 mL/mg·min at 80–380 W and 2.9679–4.1067 mL/mg·min at 0.185–1.750 L/min), effective diffusion coefficient (12.4448 × 10
−13
−17.5691 × 10
−13
m
2
/s at 80–380 W and 12.0788 × 10
−13
−16.1050 × 10
−13
m
2
/s at 0.185–1.750 L/min), and mass transfer coefficient (2.5196 × 10
−7
−2.9750 × 10
−7
m/s at 80–380 W and 2.3982 × 10
−7
−2.6411 × 10
−7
m/s at 0.185–1.750 L/min) also increased. When ultrasonic extraction was executed using degassed solution (i.e., no cavitation), the paclitaxel yield was 51%, regardless of ultrasonic power; and the extraction rate constant, effective diffusion coefficient, and mass transfer coefficient were relatively small. This investigation of the ultrasonic extraction mechanism proved that cavitation bubbles themselves play a key role in promoting cell disruption, which has been indicated as improving the recovery efficiency of paclitaxel. |
doi_str_mv | 10.1007/s12257-021-0298-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2711093432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2711093432</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-3b38885d592e9d7995ba419c2397a9925d20416d7276f933abf91f517c4b81963</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxRdRsFY_gLeA59VMsrvZHGWpf1Cxh_YcstmsTUmzNclCBT-8qVU8eRhmYN7vzfCy7BLwNWDMbgIQUrIcE0jF67w4yibAWZXTGqrjNBNS5TVl5DQ7C2GNccHqup5knzM7KtPJaAaHhh7FlUYvWq2kM2GDpOvQk3E6GhX226WNXobBGYVmuzSqX2wulTVR7rRFvR82aG6li6jR1qJmtHH0-ptfyN0YkFolSxdMOM9OemmDvvjp02x5N1s0D_nz6_1jc_ucKwpVzGlL069lV3Kiecc4L1tZAFeEciY5J2VHcAFVxwirek6pbHsOfQlMFW0NvKLT7Orgu_XD-6hDFOth9C6dFIQBYE4LSpIKDirlhxC87sXWm430HwKw2IcsDiGLFLLYhyyKxJADE5LWvWn_5_w_9AU-cX9D</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2711093432</pqid></control><display><type>article</type><title>Elucidation of the Mechanism and Kinetics of Ultrasonic Extraction of Paclitaxel from Plant Cell Cultures of Taxus chinensis</title><source>Springer Online Journals Complete</source><creator>Kim, Hak-Gyun ; Kim, Jin-Hyun</creator><creatorcontrib>Kim, Hak-Gyun ; Kim, Jin-Hyun</creatorcontrib><description>In this study, the kinetics and mechanism of ultrasonic extraction of paclitaxel from
Taxus chinensis
were analyzed using ultrasonic cavitation bubbles and gas bubbles. The resulting paclitaxel yields (after one-time extraction) were 62–99% at ultrasonic power of 80–380 W in ultrasonic extraction and 61–76% at gas flow rate of 0.185–1.75 L/min in extraction using gas bubbles. These results show improvements from the yield obtained using conventional extraction (58%). As the ultrasonic power and gas flow rate increased, the extraction rate constant (3.0263–6.6028 mL/mg·min at 80–380 W and 2.9679–4.1067 mL/mg·min at 0.185–1.750 L/min), effective diffusion coefficient (12.4448 × 10
−13
−17.5691 × 10
−13
m
2
/s at 80–380 W and 12.0788 × 10
−13
−16.1050 × 10
−13
m
2
/s at 0.185–1.750 L/min), and mass transfer coefficient (2.5196 × 10
−7
−2.9750 × 10
−7
m/s at 80–380 W and 2.3982 × 10
−7
−2.6411 × 10
−7
m/s at 0.185–1.750 L/min) also increased. When ultrasonic extraction was executed using degassed solution (i.e., no cavitation), the paclitaxel yield was 51%, regardless of ultrasonic power; and the extraction rate constant, effective diffusion coefficient, and mass transfer coefficient were relatively small. This investigation of the ultrasonic extraction mechanism proved that cavitation bubbles themselves play a key role in promoting cell disruption, which has been indicated as improving the recovery efficiency of paclitaxel.</description><identifier>ISSN: 1226-8372</identifier><identifier>EISSN: 1976-3816</identifier><identifier>DOI: 10.1007/s12257-021-0298-4</identifier><language>eng</language><publisher>Seoul: The Korean Society for Biotechnology and Bioengineering</publisher><subject>Biotechnology ; Bubbles ; Cavitation ; Cell disruption ; Chemistry ; Chemistry and Materials Science ; Diffusion coefficient ; Diffusion rate ; Electrons ; Flow rates ; Flow velocity ; Gas flow ; Industrial and Production Engineering ; Kinetics ; Mass transfer ; Paclitaxel ; Plant extracts ; Research Paper ; Taxus chinensis</subject><ispartof>Biotechnology and bioprocess engineering, 2022-08, Vol.27 (4), p.668-677</ispartof><rights>The Korean Society for Biotechnology and Bioengineering and Springer 2022</rights><rights>The Korean Society for Biotechnology and Bioengineering and Springer 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-3b38885d592e9d7995ba419c2397a9925d20416d7276f933abf91f517c4b81963</citedby><cites>FETCH-LOGICAL-c316t-3b38885d592e9d7995ba419c2397a9925d20416d7276f933abf91f517c4b81963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12257-021-0298-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12257-021-0298-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kim, Hak-Gyun</creatorcontrib><creatorcontrib>Kim, Jin-Hyun</creatorcontrib><title>Elucidation of the Mechanism and Kinetics of Ultrasonic Extraction of Paclitaxel from Plant Cell Cultures of Taxus chinensis</title><title>Biotechnology and bioprocess engineering</title><addtitle>Biotechnol Bioproc E</addtitle><description>In this study, the kinetics and mechanism of ultrasonic extraction of paclitaxel from
Taxus chinensis
were analyzed using ultrasonic cavitation bubbles and gas bubbles. The resulting paclitaxel yields (after one-time extraction) were 62–99% at ultrasonic power of 80–380 W in ultrasonic extraction and 61–76% at gas flow rate of 0.185–1.75 L/min in extraction using gas bubbles. These results show improvements from the yield obtained using conventional extraction (58%). As the ultrasonic power and gas flow rate increased, the extraction rate constant (3.0263–6.6028 mL/mg·min at 80–380 W and 2.9679–4.1067 mL/mg·min at 0.185–1.750 L/min), effective diffusion coefficient (12.4448 × 10
−13
−17.5691 × 10
−13
m
2
/s at 80–380 W and 12.0788 × 10
−13
−16.1050 × 10
−13
m
2
/s at 0.185–1.750 L/min), and mass transfer coefficient (2.5196 × 10
−7
−2.9750 × 10
−7
m/s at 80–380 W and 2.3982 × 10
−7
−2.6411 × 10
−7
m/s at 0.185–1.750 L/min) also increased. When ultrasonic extraction was executed using degassed solution (i.e., no cavitation), the paclitaxel yield was 51%, regardless of ultrasonic power; and the extraction rate constant, effective diffusion coefficient, and mass transfer coefficient were relatively small. This investigation of the ultrasonic extraction mechanism proved that cavitation bubbles themselves play a key role in promoting cell disruption, which has been indicated as improving the recovery efficiency of paclitaxel.</description><subject>Biotechnology</subject><subject>Bubbles</subject><subject>Cavitation</subject><subject>Cell disruption</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Diffusion coefficient</subject><subject>Diffusion rate</subject><subject>Electrons</subject><subject>Flow rates</subject><subject>Flow velocity</subject><subject>Gas flow</subject><subject>Industrial and Production Engineering</subject><subject>Kinetics</subject><subject>Mass transfer</subject><subject>Paclitaxel</subject><subject>Plant extracts</subject><subject>Research Paper</subject><subject>Taxus chinensis</subject><issn>1226-8372</issn><issn>1976-3816</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LAzEQxRdRsFY_gLeA59VMsrvZHGWpf1Cxh_YcstmsTUmzNclCBT-8qVU8eRhmYN7vzfCy7BLwNWDMbgIQUrIcE0jF67w4yibAWZXTGqrjNBNS5TVl5DQ7C2GNccHqup5knzM7KtPJaAaHhh7FlUYvWq2kM2GDpOvQk3E6GhX226WNXobBGYVmuzSqX2wulTVR7rRFvR82aG6li6jR1qJmtHH0-ptfyN0YkFolSxdMOM9OemmDvvjp02x5N1s0D_nz6_1jc_ucKwpVzGlL069lV3Kiecc4L1tZAFeEciY5J2VHcAFVxwirek6pbHsOfQlMFW0NvKLT7Orgu_XD-6hDFOth9C6dFIQBYE4LSpIKDirlhxC87sXWm430HwKw2IcsDiGLFLLYhyyKxJADE5LWvWn_5_w_9AU-cX9D</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Kim, Hak-Gyun</creator><creator>Kim, Jin-Hyun</creator><general>The Korean Society for Biotechnology and Bioengineering</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20220801</creationdate><title>Elucidation of the Mechanism and Kinetics of Ultrasonic Extraction of Paclitaxel from Plant Cell Cultures of Taxus chinensis</title><author>Kim, Hak-Gyun ; Kim, Jin-Hyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-3b38885d592e9d7995ba419c2397a9925d20416d7276f933abf91f517c4b81963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biotechnology</topic><topic>Bubbles</topic><topic>Cavitation</topic><topic>Cell disruption</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Diffusion coefficient</topic><topic>Diffusion rate</topic><topic>Electrons</topic><topic>Flow rates</topic><topic>Flow velocity</topic><topic>Gas flow</topic><topic>Industrial and Production Engineering</topic><topic>Kinetics</topic><topic>Mass transfer</topic><topic>Paclitaxel</topic><topic>Plant extracts</topic><topic>Research Paper</topic><topic>Taxus chinensis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Hak-Gyun</creatorcontrib><creatorcontrib>Kim, Jin-Hyun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Biotechnology and bioprocess engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Hak-Gyun</au><au>Kim, Jin-Hyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elucidation of the Mechanism and Kinetics of Ultrasonic Extraction of Paclitaxel from Plant Cell Cultures of Taxus chinensis</atitle><jtitle>Biotechnology and bioprocess engineering</jtitle><stitle>Biotechnol Bioproc E</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>27</volume><issue>4</issue><spage>668</spage><epage>677</epage><pages>668-677</pages><issn>1226-8372</issn><eissn>1976-3816</eissn><abstract>In this study, the kinetics and mechanism of ultrasonic extraction of paclitaxel from
Taxus chinensis
were analyzed using ultrasonic cavitation bubbles and gas bubbles. The resulting paclitaxel yields (after one-time extraction) were 62–99% at ultrasonic power of 80–380 W in ultrasonic extraction and 61–76% at gas flow rate of 0.185–1.75 L/min in extraction using gas bubbles. These results show improvements from the yield obtained using conventional extraction (58%). As the ultrasonic power and gas flow rate increased, the extraction rate constant (3.0263–6.6028 mL/mg·min at 80–380 W and 2.9679–4.1067 mL/mg·min at 0.185–1.750 L/min), effective diffusion coefficient (12.4448 × 10
−13
−17.5691 × 10
−13
m
2
/s at 80–380 W and 12.0788 × 10
−13
−16.1050 × 10
−13
m
2
/s at 0.185–1.750 L/min), and mass transfer coefficient (2.5196 × 10
−7
−2.9750 × 10
−7
m/s at 80–380 W and 2.3982 × 10
−7
−2.6411 × 10
−7
m/s at 0.185–1.750 L/min) also increased. When ultrasonic extraction was executed using degassed solution (i.e., no cavitation), the paclitaxel yield was 51%, regardless of ultrasonic power; and the extraction rate constant, effective diffusion coefficient, and mass transfer coefficient were relatively small. This investigation of the ultrasonic extraction mechanism proved that cavitation bubbles themselves play a key role in promoting cell disruption, which has been indicated as improving the recovery efficiency of paclitaxel.</abstract><cop>Seoul</cop><pub>The Korean Society for Biotechnology and Bioengineering</pub><doi>10.1007/s12257-021-0298-4</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1226-8372 |
ispartof | Biotechnology and bioprocess engineering, 2022-08, Vol.27 (4), p.668-677 |
issn | 1226-8372 1976-3816 |
language | eng |
recordid | cdi_proquest_journals_2711093432 |
source | Springer Online Journals Complete |
subjects | Biotechnology Bubbles Cavitation Cell disruption Chemistry Chemistry and Materials Science Diffusion coefficient Diffusion rate Electrons Flow rates Flow velocity Gas flow Industrial and Production Engineering Kinetics Mass transfer Paclitaxel Plant extracts Research Paper Taxus chinensis |
title | Elucidation of the Mechanism and Kinetics of Ultrasonic Extraction of Paclitaxel from Plant Cell Cultures of Taxus chinensis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A43%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elucidation%20of%20the%20Mechanism%20and%20Kinetics%20of%20Ultrasonic%20Extraction%20of%20Paclitaxel%20from%20Plant%20Cell%20Cultures%20of%20Taxus%20chinensis&rft.jtitle=Biotechnology%20and%20bioprocess%20engineering&rft.au=Kim,%20Hak-Gyun&rft.date=2022-08-01&rft.volume=27&rft.issue=4&rft.spage=668&rft.epage=677&rft.pages=668-677&rft.issn=1226-8372&rft.eissn=1976-3816&rft_id=info:doi/10.1007/s12257-021-0298-4&rft_dat=%3Cproquest_cross%3E2711093432%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2711093432&rft_id=info:pmid/&rfr_iscdi=true |