Elucidation of the Mechanism and Kinetics of Ultrasonic Extraction of Paclitaxel from Plant Cell Cultures of Taxus chinensis

In this study, the kinetics and mechanism of ultrasonic extraction of paclitaxel from Taxus chinensis were analyzed using ultrasonic cavitation bubbles and gas bubbles. The resulting paclitaxel yields (after one-time extraction) were 62–99% at ultrasonic power of 80–380 W in ultrasonic extraction an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and bioprocess engineering 2022-08, Vol.27 (4), p.668-677
Hauptverfasser: Kim, Hak-Gyun, Kim, Jin-Hyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 677
container_issue 4
container_start_page 668
container_title Biotechnology and bioprocess engineering
container_volume 27
creator Kim, Hak-Gyun
Kim, Jin-Hyun
description In this study, the kinetics and mechanism of ultrasonic extraction of paclitaxel from Taxus chinensis were analyzed using ultrasonic cavitation bubbles and gas bubbles. The resulting paclitaxel yields (after one-time extraction) were 62–99% at ultrasonic power of 80–380 W in ultrasonic extraction and 61–76% at gas flow rate of 0.185–1.75 L/min in extraction using gas bubbles. These results show improvements from the yield obtained using conventional extraction (58%). As the ultrasonic power and gas flow rate increased, the extraction rate constant (3.0263–6.6028 mL/mg·min at 80–380 W and 2.9679–4.1067 mL/mg·min at 0.185–1.750 L/min), effective diffusion coefficient (12.4448 × 10 −13 −17.5691 × 10 −13 m 2 /s at 80–380 W and 12.0788 × 10 −13 −16.1050 × 10 −13 m 2 /s at 0.185–1.750 L/min), and mass transfer coefficient (2.5196 × 10 −7 −2.9750 × 10 −7 m/s at 80–380 W and 2.3982 × 10 −7 −2.6411 × 10 −7 m/s at 0.185–1.750 L/min) also increased. When ultrasonic extraction was executed using degassed solution (i.e., no cavitation), the paclitaxel yield was 51%, regardless of ultrasonic power; and the extraction rate constant, effective diffusion coefficient, and mass transfer coefficient were relatively small. This investigation of the ultrasonic extraction mechanism proved that cavitation bubbles themselves play a key role in promoting cell disruption, which has been indicated as improving the recovery efficiency of paclitaxel.
doi_str_mv 10.1007/s12257-021-0298-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2711093432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2711093432</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-3b38885d592e9d7995ba419c2397a9925d20416d7276f933abf91f517c4b81963</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxRdRsFY_gLeA59VMsrvZHGWpf1Cxh_YcstmsTUmzNclCBT-8qVU8eRhmYN7vzfCy7BLwNWDMbgIQUrIcE0jF67w4yibAWZXTGqrjNBNS5TVl5DQ7C2GNccHqup5knzM7KtPJaAaHhh7FlUYvWq2kM2GDpOvQk3E6GhX226WNXobBGYVmuzSqX2wulTVR7rRFvR82aG6li6jR1qJmtHH0-ptfyN0YkFolSxdMOM9OemmDvvjp02x5N1s0D_nz6_1jc_ucKwpVzGlL069lV3Kiecc4L1tZAFeEciY5J2VHcAFVxwirek6pbHsOfQlMFW0NvKLT7Orgu_XD-6hDFOth9C6dFIQBYE4LSpIKDirlhxC87sXWm430HwKw2IcsDiGLFLLYhyyKxJADE5LWvWn_5_w_9AU-cX9D</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2711093432</pqid></control><display><type>article</type><title>Elucidation of the Mechanism and Kinetics of Ultrasonic Extraction of Paclitaxel from Plant Cell Cultures of Taxus chinensis</title><source>Springer Online Journals Complete</source><creator>Kim, Hak-Gyun ; Kim, Jin-Hyun</creator><creatorcontrib>Kim, Hak-Gyun ; Kim, Jin-Hyun</creatorcontrib><description>In this study, the kinetics and mechanism of ultrasonic extraction of paclitaxel from Taxus chinensis were analyzed using ultrasonic cavitation bubbles and gas bubbles. The resulting paclitaxel yields (after one-time extraction) were 62–99% at ultrasonic power of 80–380 W in ultrasonic extraction and 61–76% at gas flow rate of 0.185–1.75 L/min in extraction using gas bubbles. These results show improvements from the yield obtained using conventional extraction (58%). As the ultrasonic power and gas flow rate increased, the extraction rate constant (3.0263–6.6028 mL/mg·min at 80–380 W and 2.9679–4.1067 mL/mg·min at 0.185–1.750 L/min), effective diffusion coefficient (12.4448 × 10 −13 −17.5691 × 10 −13 m 2 /s at 80–380 W and 12.0788 × 10 −13 −16.1050 × 10 −13 m 2 /s at 0.185–1.750 L/min), and mass transfer coefficient (2.5196 × 10 −7 −2.9750 × 10 −7 m/s at 80–380 W and 2.3982 × 10 −7 −2.6411 × 10 −7 m/s at 0.185–1.750 L/min) also increased. When ultrasonic extraction was executed using degassed solution (i.e., no cavitation), the paclitaxel yield was 51%, regardless of ultrasonic power; and the extraction rate constant, effective diffusion coefficient, and mass transfer coefficient were relatively small. This investigation of the ultrasonic extraction mechanism proved that cavitation bubbles themselves play a key role in promoting cell disruption, which has been indicated as improving the recovery efficiency of paclitaxel.</description><identifier>ISSN: 1226-8372</identifier><identifier>EISSN: 1976-3816</identifier><identifier>DOI: 10.1007/s12257-021-0298-4</identifier><language>eng</language><publisher>Seoul: The Korean Society for Biotechnology and Bioengineering</publisher><subject>Biotechnology ; Bubbles ; Cavitation ; Cell disruption ; Chemistry ; Chemistry and Materials Science ; Diffusion coefficient ; Diffusion rate ; Electrons ; Flow rates ; Flow velocity ; Gas flow ; Industrial and Production Engineering ; Kinetics ; Mass transfer ; Paclitaxel ; Plant extracts ; Research Paper ; Taxus chinensis</subject><ispartof>Biotechnology and bioprocess engineering, 2022-08, Vol.27 (4), p.668-677</ispartof><rights>The Korean Society for Biotechnology and Bioengineering and Springer 2022</rights><rights>The Korean Society for Biotechnology and Bioengineering and Springer 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-3b38885d592e9d7995ba419c2397a9925d20416d7276f933abf91f517c4b81963</citedby><cites>FETCH-LOGICAL-c316t-3b38885d592e9d7995ba419c2397a9925d20416d7276f933abf91f517c4b81963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12257-021-0298-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12257-021-0298-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kim, Hak-Gyun</creatorcontrib><creatorcontrib>Kim, Jin-Hyun</creatorcontrib><title>Elucidation of the Mechanism and Kinetics of Ultrasonic Extraction of Paclitaxel from Plant Cell Cultures of Taxus chinensis</title><title>Biotechnology and bioprocess engineering</title><addtitle>Biotechnol Bioproc E</addtitle><description>In this study, the kinetics and mechanism of ultrasonic extraction of paclitaxel from Taxus chinensis were analyzed using ultrasonic cavitation bubbles and gas bubbles. The resulting paclitaxel yields (after one-time extraction) were 62–99% at ultrasonic power of 80–380 W in ultrasonic extraction and 61–76% at gas flow rate of 0.185–1.75 L/min in extraction using gas bubbles. These results show improvements from the yield obtained using conventional extraction (58%). As the ultrasonic power and gas flow rate increased, the extraction rate constant (3.0263–6.6028 mL/mg·min at 80–380 W and 2.9679–4.1067 mL/mg·min at 0.185–1.750 L/min), effective diffusion coefficient (12.4448 × 10 −13 −17.5691 × 10 −13 m 2 /s at 80–380 W and 12.0788 × 10 −13 −16.1050 × 10 −13 m 2 /s at 0.185–1.750 L/min), and mass transfer coefficient (2.5196 × 10 −7 −2.9750 × 10 −7 m/s at 80–380 W and 2.3982 × 10 −7 −2.6411 × 10 −7 m/s at 0.185–1.750 L/min) also increased. When ultrasonic extraction was executed using degassed solution (i.e., no cavitation), the paclitaxel yield was 51%, regardless of ultrasonic power; and the extraction rate constant, effective diffusion coefficient, and mass transfer coefficient were relatively small. This investigation of the ultrasonic extraction mechanism proved that cavitation bubbles themselves play a key role in promoting cell disruption, which has been indicated as improving the recovery efficiency of paclitaxel.</description><subject>Biotechnology</subject><subject>Bubbles</subject><subject>Cavitation</subject><subject>Cell disruption</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Diffusion coefficient</subject><subject>Diffusion rate</subject><subject>Electrons</subject><subject>Flow rates</subject><subject>Flow velocity</subject><subject>Gas flow</subject><subject>Industrial and Production Engineering</subject><subject>Kinetics</subject><subject>Mass transfer</subject><subject>Paclitaxel</subject><subject>Plant extracts</subject><subject>Research Paper</subject><subject>Taxus chinensis</subject><issn>1226-8372</issn><issn>1976-3816</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LAzEQxRdRsFY_gLeA59VMsrvZHGWpf1Cxh_YcstmsTUmzNclCBT-8qVU8eRhmYN7vzfCy7BLwNWDMbgIQUrIcE0jF67w4yibAWZXTGqrjNBNS5TVl5DQ7C2GNccHqup5knzM7KtPJaAaHhh7FlUYvWq2kM2GDpOvQk3E6GhX226WNXobBGYVmuzSqX2wulTVR7rRFvR82aG6li6jR1qJmtHH0-ptfyN0YkFolSxdMOM9OemmDvvjp02x5N1s0D_nz6_1jc_ucKwpVzGlL069lV3Kiecc4L1tZAFeEciY5J2VHcAFVxwirek6pbHsOfQlMFW0NvKLT7Orgu_XD-6hDFOth9C6dFIQBYE4LSpIKDirlhxC87sXWm430HwKw2IcsDiGLFLLYhyyKxJADE5LWvWn_5_w_9AU-cX9D</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Kim, Hak-Gyun</creator><creator>Kim, Jin-Hyun</creator><general>The Korean Society for Biotechnology and Bioengineering</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20220801</creationdate><title>Elucidation of the Mechanism and Kinetics of Ultrasonic Extraction of Paclitaxel from Plant Cell Cultures of Taxus chinensis</title><author>Kim, Hak-Gyun ; Kim, Jin-Hyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-3b38885d592e9d7995ba419c2397a9925d20416d7276f933abf91f517c4b81963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biotechnology</topic><topic>Bubbles</topic><topic>Cavitation</topic><topic>Cell disruption</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Diffusion coefficient</topic><topic>Diffusion rate</topic><topic>Electrons</topic><topic>Flow rates</topic><topic>Flow velocity</topic><topic>Gas flow</topic><topic>Industrial and Production Engineering</topic><topic>Kinetics</topic><topic>Mass transfer</topic><topic>Paclitaxel</topic><topic>Plant extracts</topic><topic>Research Paper</topic><topic>Taxus chinensis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Hak-Gyun</creatorcontrib><creatorcontrib>Kim, Jin-Hyun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Biotechnology and bioprocess engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Hak-Gyun</au><au>Kim, Jin-Hyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elucidation of the Mechanism and Kinetics of Ultrasonic Extraction of Paclitaxel from Plant Cell Cultures of Taxus chinensis</atitle><jtitle>Biotechnology and bioprocess engineering</jtitle><stitle>Biotechnol Bioproc E</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>27</volume><issue>4</issue><spage>668</spage><epage>677</epage><pages>668-677</pages><issn>1226-8372</issn><eissn>1976-3816</eissn><abstract>In this study, the kinetics and mechanism of ultrasonic extraction of paclitaxel from Taxus chinensis were analyzed using ultrasonic cavitation bubbles and gas bubbles. The resulting paclitaxel yields (after one-time extraction) were 62–99% at ultrasonic power of 80–380 W in ultrasonic extraction and 61–76% at gas flow rate of 0.185–1.75 L/min in extraction using gas bubbles. These results show improvements from the yield obtained using conventional extraction (58%). As the ultrasonic power and gas flow rate increased, the extraction rate constant (3.0263–6.6028 mL/mg·min at 80–380 W and 2.9679–4.1067 mL/mg·min at 0.185–1.750 L/min), effective diffusion coefficient (12.4448 × 10 −13 −17.5691 × 10 −13 m 2 /s at 80–380 W and 12.0788 × 10 −13 −16.1050 × 10 −13 m 2 /s at 0.185–1.750 L/min), and mass transfer coefficient (2.5196 × 10 −7 −2.9750 × 10 −7 m/s at 80–380 W and 2.3982 × 10 −7 −2.6411 × 10 −7 m/s at 0.185–1.750 L/min) also increased. When ultrasonic extraction was executed using degassed solution (i.e., no cavitation), the paclitaxel yield was 51%, regardless of ultrasonic power; and the extraction rate constant, effective diffusion coefficient, and mass transfer coefficient were relatively small. This investigation of the ultrasonic extraction mechanism proved that cavitation bubbles themselves play a key role in promoting cell disruption, which has been indicated as improving the recovery efficiency of paclitaxel.</abstract><cop>Seoul</cop><pub>The Korean Society for Biotechnology and Bioengineering</pub><doi>10.1007/s12257-021-0298-4</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1226-8372
ispartof Biotechnology and bioprocess engineering, 2022-08, Vol.27 (4), p.668-677
issn 1226-8372
1976-3816
language eng
recordid cdi_proquest_journals_2711093432
source Springer Online Journals Complete
subjects Biotechnology
Bubbles
Cavitation
Cell disruption
Chemistry
Chemistry and Materials Science
Diffusion coefficient
Diffusion rate
Electrons
Flow rates
Flow velocity
Gas flow
Industrial and Production Engineering
Kinetics
Mass transfer
Paclitaxel
Plant extracts
Research Paper
Taxus chinensis
title Elucidation of the Mechanism and Kinetics of Ultrasonic Extraction of Paclitaxel from Plant Cell Cultures of Taxus chinensis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A43%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elucidation%20of%20the%20Mechanism%20and%20Kinetics%20of%20Ultrasonic%20Extraction%20of%20Paclitaxel%20from%20Plant%20Cell%20Cultures%20of%20Taxus%20chinensis&rft.jtitle=Biotechnology%20and%20bioprocess%20engineering&rft.au=Kim,%20Hak-Gyun&rft.date=2022-08-01&rft.volume=27&rft.issue=4&rft.spage=668&rft.epage=677&rft.pages=668-677&rft.issn=1226-8372&rft.eissn=1976-3816&rft_id=info:doi/10.1007/s12257-021-0298-4&rft_dat=%3Cproquest_cross%3E2711093432%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2711093432&rft_id=info:pmid/&rfr_iscdi=true