Infinity Stream: Enabling Transparent and Automated In-Memory Computing
Although in-memory computing is promising to alleviate the data movement bottlenecks by parallelizing computation across memory bitlines, key challenges from its unique execution model remain unsolved: Automatically parallelizing sequential programs; Dynamically managing and aligning data in transpo...
Gespeichert in:
Veröffentlicht in: | IEEE computer architecture letters 2022-07, Vol.21 (2), p.85-88 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 88 |
---|---|
container_issue | 2 |
container_start_page | 85 |
container_title | IEEE computer architecture letters |
container_volume | 21 |
creator | Wang, Zhengrong Liu, Christopher Nowatzki, Tony |
description | Although in-memory computing is promising to alleviate the data movement bottlenecks by parallelizing computation across memory bitlines, key challenges from its unique execution model remain unsolved: Automatically parallelizing sequential programs; Dynamically managing and aligning data in transposed layout required for bit-serial logic; Mixing in/near-memory computing. These challenges should be solved transparently to maintain portability without exposing hardware details to programmers. In this work, we introduce a novel intermediate representation - tensor dataflow graph (tDFG) - with tensor nodes representing the spatially unrolled data across bitlines, and explicit move nodes to align operands in the same bitline, which helps the compiler optimize for massive parallelism and data layout. To maintain transparency and portability, we directly embed tDFG in the ISA, which is lowered into bit-serial operations at runtime to hide the hardware details. Evaluated on cycle-accurate simulator across various data-processing workloads, our approach achieves 4.5× speedup and 52% traffic reduction over a state-of-the-art near-memory computing technique. |
doi_str_mv | 10.1109/LCA.2022.3203064 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2711055765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9872048</ieee_id><sourcerecordid>2711055765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-6835e103658530d8db460bd37e92435a29a17c0c00bb992077a50da2237417f13</originalsourceid><addsrcrecordid>eNo9kM9LwzAYhoMoOKd3wUvAc-eX3623UXQOJh6c55C2qXSsaU3Sw_57MzZ2-t7D874fPAg9ElgQAsXLplwuKFC6YBQYSH6FZkQImcmUry9ZyFt0F8IOgEuW8xlarV3buS4e8Hf01vSv-M2Zat-5X7z1xoXReOsiNq7ByykOvYm2wWuXfdp-8AdcDv04xUTfo5vW7IN9ON85-nl_25Yf2eZrtS6Xm6ymlMRM5kxYAkyKXDBo8qbiEqqGKVtQzoShhSGqhhqgqoqCglJGQGMoZYoT1RI2R8-n3dEPf5MNUe-Gybv0UlOVRAihpEgUnKjaDyF42-rRd73xB01AH3XppEsfdemzrlR5OlU6a-0FL3JFgefsH8WUY7E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2711055765</pqid></control><display><type>article</type><title>Infinity Stream: Enabling Transparent and Automated In-Memory Computing</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Zhengrong ; Liu, Christopher ; Nowatzki, Tony</creator><creatorcontrib>Wang, Zhengrong ; Liu, Christopher ; Nowatzki, Tony</creatorcontrib><description>Although in-memory computing is promising to alleviate the data movement bottlenecks by parallelizing computation across memory bitlines, key challenges from its unique execution model remain unsolved: Automatically parallelizing sequential programs; Dynamically managing and aligning data in transposed layout required for bit-serial logic; Mixing in/near-memory computing. These challenges should be solved transparently to maintain portability without exposing hardware details to programmers. In this work, we introduce a novel intermediate representation - tensor dataflow graph (tDFG) - with tensor nodes representing the spatially unrolled data across bitlines, and explicit move nodes to align operands in the same bitline, which helps the compiler optimize for massive parallelism and data layout. To maintain transparency and portability, we directly embed tDFG in the ISA, which is lowered into bit-serial operations at runtime to hide the hardware details. Evaluated on cycle-accurate simulator across various data-processing workloads, our approach achieves 4.5× speedup and 52% traffic reduction over a state-of-the-art near-memory computing technique.</description><identifier>ISSN: 1556-6056</identifier><identifier>EISSN: 1556-6064</identifier><identifier>DOI: 10.1109/LCA.2022.3203064</identifier><identifier>CODEN: ICALC3</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Arrays ; Computation ; Computer memory ; Data processing ; Graphical representations ; Hardware ; In-memory computing ; Layout ; Layouts ; Mathematical analysis ; Nodes ; Parallel processing ; Portability ; programmer-transparent acceleration ; Random access memory ; Stream-based ISAs ; Tensors ; Traffic speed</subject><ispartof>IEEE computer architecture letters, 2022-07, Vol.21 (2), p.85-88</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-6835e103658530d8db460bd37e92435a29a17c0c00bb992077a50da2237417f13</citedby><cites>FETCH-LOGICAL-c221t-6835e103658530d8db460bd37e92435a29a17c0c00bb992077a50da2237417f13</cites><orcidid>0000-0002-0917-6358 ; 0000-0003-2366-4267 ; 0000-0001-8483-3824</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9872048$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9872048$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Zhengrong</creatorcontrib><creatorcontrib>Liu, Christopher</creatorcontrib><creatorcontrib>Nowatzki, Tony</creatorcontrib><title>Infinity Stream: Enabling Transparent and Automated In-Memory Computing</title><title>IEEE computer architecture letters</title><addtitle>LCA</addtitle><description>Although in-memory computing is promising to alleviate the data movement bottlenecks by parallelizing computation across memory bitlines, key challenges from its unique execution model remain unsolved: Automatically parallelizing sequential programs; Dynamically managing and aligning data in transposed layout required for bit-serial logic; Mixing in/near-memory computing. These challenges should be solved transparently to maintain portability without exposing hardware details to programmers. In this work, we introduce a novel intermediate representation - tensor dataflow graph (tDFG) - with tensor nodes representing the spatially unrolled data across bitlines, and explicit move nodes to align operands in the same bitline, which helps the compiler optimize for massive parallelism and data layout. To maintain transparency and portability, we directly embed tDFG in the ISA, which is lowered into bit-serial operations at runtime to hide the hardware details. Evaluated on cycle-accurate simulator across various data-processing workloads, our approach achieves 4.5× speedup and 52% traffic reduction over a state-of-the-art near-memory computing technique.</description><subject>Arrays</subject><subject>Computation</subject><subject>Computer memory</subject><subject>Data processing</subject><subject>Graphical representations</subject><subject>Hardware</subject><subject>In-memory computing</subject><subject>Layout</subject><subject>Layouts</subject><subject>Mathematical analysis</subject><subject>Nodes</subject><subject>Parallel processing</subject><subject>Portability</subject><subject>programmer-transparent acceleration</subject><subject>Random access memory</subject><subject>Stream-based ISAs</subject><subject>Tensors</subject><subject>Traffic speed</subject><issn>1556-6056</issn><issn>1556-6064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9LwzAYhoMoOKd3wUvAc-eX3623UXQOJh6c55C2qXSsaU3Sw_57MzZ2-t7D874fPAg9ElgQAsXLplwuKFC6YBQYSH6FZkQImcmUry9ZyFt0F8IOgEuW8xlarV3buS4e8Hf01vSv-M2Zat-5X7z1xoXReOsiNq7ByykOvYm2wWuXfdp-8AdcDv04xUTfo5vW7IN9ON85-nl_25Yf2eZrtS6Xm6ymlMRM5kxYAkyKXDBo8qbiEqqGKVtQzoShhSGqhhqgqoqCglJGQGMoZYoT1RI2R8-n3dEPf5MNUe-Gybv0UlOVRAihpEgUnKjaDyF42-rRd73xB01AH3XppEsfdemzrlR5OlU6a-0FL3JFgefsH8WUY7E</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Wang, Zhengrong</creator><creator>Liu, Christopher</creator><creator>Nowatzki, Tony</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0917-6358</orcidid><orcidid>https://orcid.org/0000-0003-2366-4267</orcidid><orcidid>https://orcid.org/0000-0001-8483-3824</orcidid></search><sort><creationdate>20220701</creationdate><title>Infinity Stream: Enabling Transparent and Automated In-Memory Computing</title><author>Wang, Zhengrong ; Liu, Christopher ; Nowatzki, Tony</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-6835e103658530d8db460bd37e92435a29a17c0c00bb992077a50da2237417f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Arrays</topic><topic>Computation</topic><topic>Computer memory</topic><topic>Data processing</topic><topic>Graphical representations</topic><topic>Hardware</topic><topic>In-memory computing</topic><topic>Layout</topic><topic>Layouts</topic><topic>Mathematical analysis</topic><topic>Nodes</topic><topic>Parallel processing</topic><topic>Portability</topic><topic>programmer-transparent acceleration</topic><topic>Random access memory</topic><topic>Stream-based ISAs</topic><topic>Tensors</topic><topic>Traffic speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhengrong</creatorcontrib><creatorcontrib>Liu, Christopher</creatorcontrib><creatorcontrib>Nowatzki, Tony</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE computer architecture letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Zhengrong</au><au>Liu, Christopher</au><au>Nowatzki, Tony</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Infinity Stream: Enabling Transparent and Automated In-Memory Computing</atitle><jtitle>IEEE computer architecture letters</jtitle><stitle>LCA</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>21</volume><issue>2</issue><spage>85</spage><epage>88</epage><pages>85-88</pages><issn>1556-6056</issn><eissn>1556-6064</eissn><coden>ICALC3</coden><abstract>Although in-memory computing is promising to alleviate the data movement bottlenecks by parallelizing computation across memory bitlines, key challenges from its unique execution model remain unsolved: Automatically parallelizing sequential programs; Dynamically managing and aligning data in transposed layout required for bit-serial logic; Mixing in/near-memory computing. These challenges should be solved transparently to maintain portability without exposing hardware details to programmers. In this work, we introduce a novel intermediate representation - tensor dataflow graph (tDFG) - with tensor nodes representing the spatially unrolled data across bitlines, and explicit move nodes to align operands in the same bitline, which helps the compiler optimize for massive parallelism and data layout. To maintain transparency and portability, we directly embed tDFG in the ISA, which is lowered into bit-serial operations at runtime to hide the hardware details. Evaluated on cycle-accurate simulator across various data-processing workloads, our approach achieves 4.5× speedup and 52% traffic reduction over a state-of-the-art near-memory computing technique.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCA.2022.3203064</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-0917-6358</orcidid><orcidid>https://orcid.org/0000-0003-2366-4267</orcidid><orcidid>https://orcid.org/0000-0001-8483-3824</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1556-6056 |
ispartof | IEEE computer architecture letters, 2022-07, Vol.21 (2), p.85-88 |
issn | 1556-6056 1556-6064 |
language | eng |
recordid | cdi_proquest_journals_2711055765 |
source | IEEE Electronic Library (IEL) |
subjects | Arrays Computation Computer memory Data processing Graphical representations Hardware In-memory computing Layout Layouts Mathematical analysis Nodes Parallel processing Portability programmer-transparent acceleration Random access memory Stream-based ISAs Tensors Traffic speed |
title | Infinity Stream: Enabling Transparent and Automated In-Memory Computing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T08%3A23%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Infinity%20Stream:%20Enabling%20Transparent%20and%20Automated%20In-Memory%20Computing&rft.jtitle=IEEE%20computer%20architecture%20letters&rft.au=Wang,%20Zhengrong&rft.date=2022-07-01&rft.volume=21&rft.issue=2&rft.spage=85&rft.epage=88&rft.pages=85-88&rft.issn=1556-6056&rft.eissn=1556-6064&rft.coden=ICALC3&rft_id=info:doi/10.1109/LCA.2022.3203064&rft_dat=%3Cproquest_RIE%3E2711055765%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2711055765&rft_id=info:pmid/&rft_ieee_id=9872048&rfr_iscdi=true |