Compact dual-band millimeter-wave antenna for 5G WLAN

This paper presents a novel compact dual-band printed antenna with an omnidirectional radiation pattern for 5G WLAN. The antenna element comprises a star-shaped patch with six disc-shaped elements at the top and a defected ground structure at the bottom, having a radius of 3.77 mm for both. The prop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of microwave and wireless technologies 2022-10, Vol.14 (8), p.981-988
Hauptverfasser: Jose, Melvin Chamakalayil, Radha, Sankararajan, Sreeja, Balakrishnapillai Suseela, Gulam Nabi Alsath, Mohammed, Kumar, Pratap
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 988
container_issue 8
container_start_page 981
container_title International journal of microwave and wireless technologies
container_volume 14
creator Jose, Melvin Chamakalayil
Radha, Sankararajan
Sreeja, Balakrishnapillai Suseela
Gulam Nabi Alsath, Mohammed
Kumar, Pratap
description This paper presents a novel compact dual-band printed antenna with an omnidirectional radiation pattern for 5G WLAN. The antenna element comprises a star-shaped patch with six disc-shaped elements at the top and a defected ground structure at the bottom, having a radius of 3.77 mm for both. The proper feeding point and alignment with its element parameters help to achieve good impedance matching. The proposed antenna has a single center feed, a low profile, and a straightforward compact structure without any feeding complexity. A high reception fidelity antenna with comparable bandwidth and moderate gain is presented. The prototype radiator was printed on a 4 mm radius and a 1.6 mm thick dielectric substrate (Rogers RT/Duroid 5880), with a dielectric constant of 2.2. The designed antenna is fabricated and measured to validate the simulation result. The measured impedance bandwidth of 1.3 GHz (27.5–28.8 GHz) and 2.2 GHz (32.45–34.65 GHz) with a respective measured gain of 1.1 and 3.2 dBi are achieved at 28 and 34 GHz. The simulated radiation efficiency of above 95% is achieved for both bands. A good agreement between simulated and measured results of the proposed work shows that the proposed antenna is suitable for 5G short-range WLAN communications.
doi_str_mv 10.1017/S1759078721001288
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2710922867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1759078721001288</cupid><sourcerecordid>2710922867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-4f41f66591b0a13f695030e680b8b228fad8148de6a5a501ca42e2b1027993253</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFZ_gLeA5-jMJvt1LEFbIehBxWOYJLuSki83ieK_N6VFD-JphuF9noGXsUuEawRUN0-ohAGlFUcA5FofscXuFIIy4vhn1-qUnQ3DFkAqrdWCiaRreirGoJyoDnNqy6Cp6rpq7Gh9-EkfNqB2tG1Lget8INbBa7p6OGcnjurBXhzmkr3c3T4nmzB9XN8nqzQsIlRjGLsYnZTCYA6EkZNGQARWash1zrl2VGqMdWklCRKABcXc8hyBK2MiLqIlu9p7e9-9T3YYs203-XZ-mXGFYGaHVHMK96nCd8Pgrct6XzXkvzKEbNdO9qedmYkODDW5r8o3-6v-n_oG1EpjTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2710922867</pqid></control><display><type>article</type><title>Compact dual-band millimeter-wave antenna for 5G WLAN</title><source>Cambridge Journals Online</source><creator>Jose, Melvin Chamakalayil ; Radha, Sankararajan ; Sreeja, Balakrishnapillai Suseela ; Gulam Nabi Alsath, Mohammed ; Kumar, Pratap</creator><creatorcontrib>Jose, Melvin Chamakalayil ; Radha, Sankararajan ; Sreeja, Balakrishnapillai Suseela ; Gulam Nabi Alsath, Mohammed ; Kumar, Pratap</creatorcontrib><description>This paper presents a novel compact dual-band printed antenna with an omnidirectional radiation pattern for 5G WLAN. The antenna element comprises a star-shaped patch with six disc-shaped elements at the top and a defected ground structure at the bottom, having a radius of 3.77 mm for both. The proper feeding point and alignment with its element parameters help to achieve good impedance matching. The proposed antenna has a single center feed, a low profile, and a straightforward compact structure without any feeding complexity. A high reception fidelity antenna with comparable bandwidth and moderate gain is presented. The prototype radiator was printed on a 4 mm radius and a 1.6 mm thick dielectric substrate (Rogers RT/Duroid 5880), with a dielectric constant of 2.2. The designed antenna is fabricated and measured to validate the simulation result. The measured impedance bandwidth of 1.3 GHz (27.5–28.8 GHz) and 2.2 GHz (32.45–34.65 GHz) with a respective measured gain of 1.1 and 3.2 dBi are achieved at 28 and 34 GHz. The simulated radiation efficiency of above 95% is achieved for both bands. A good agreement between simulated and measured results of the proposed work shows that the proposed antenna is suitable for 5G short-range WLAN communications.</description><identifier>ISSN: 1759-0787</identifier><identifier>EISSN: 1759-0795</identifier><identifier>DOI: 10.1017/S1759078721001288</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Antenna Design, Modelling and Measurements ; Antenna radiation patterns ; Antennas ; Bandwidths ; Design ; Geometry ; Impedance matching ; Local area networks ; Microstrip antennas ; Millimeter waves ; Radiation ; Radiators ; Simulation ; Spectrum allocation ; Substrates ; Wireless communications</subject><ispartof>International journal of microwave and wireless technologies, 2022-10, Vol.14 (8), p.981-988</ispartof><rights>Copyright © The Author(s), 2021. Published by Cambridge University Press in association with the European Microwave Association</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-4f41f66591b0a13f695030e680b8b228fad8148de6a5a501ca42e2b1027993253</citedby><cites>FETCH-LOGICAL-c317t-4f41f66591b0a13f695030e680b8b228fad8148de6a5a501ca42e2b1027993253</cites><orcidid>0000-0002-4568-8879 ; 0000-0002-4640-4567</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1759078721001288/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Jose, Melvin Chamakalayil</creatorcontrib><creatorcontrib>Radha, Sankararajan</creatorcontrib><creatorcontrib>Sreeja, Balakrishnapillai Suseela</creatorcontrib><creatorcontrib>Gulam Nabi Alsath, Mohammed</creatorcontrib><creatorcontrib>Kumar, Pratap</creatorcontrib><title>Compact dual-band millimeter-wave antenna for 5G WLAN</title><title>International journal of microwave and wireless technologies</title><addtitle>Int. J. Microw. Wireless Technol</addtitle><description>This paper presents a novel compact dual-band printed antenna with an omnidirectional radiation pattern for 5G WLAN. The antenna element comprises a star-shaped patch with six disc-shaped elements at the top and a defected ground structure at the bottom, having a radius of 3.77 mm for both. The proper feeding point and alignment with its element parameters help to achieve good impedance matching. The proposed antenna has a single center feed, a low profile, and a straightforward compact structure without any feeding complexity. A high reception fidelity antenna with comparable bandwidth and moderate gain is presented. The prototype radiator was printed on a 4 mm radius and a 1.6 mm thick dielectric substrate (Rogers RT/Duroid 5880), with a dielectric constant of 2.2. The designed antenna is fabricated and measured to validate the simulation result. The measured impedance bandwidth of 1.3 GHz (27.5–28.8 GHz) and 2.2 GHz (32.45–34.65 GHz) with a respective measured gain of 1.1 and 3.2 dBi are achieved at 28 and 34 GHz. The simulated radiation efficiency of above 95% is achieved for both bands. A good agreement between simulated and measured results of the proposed work shows that the proposed antenna is suitable for 5G short-range WLAN communications.</description><subject>Antenna Design, Modelling and Measurements</subject><subject>Antenna radiation patterns</subject><subject>Antennas</subject><subject>Bandwidths</subject><subject>Design</subject><subject>Geometry</subject><subject>Impedance matching</subject><subject>Local area networks</subject><subject>Microstrip antennas</subject><subject>Millimeter waves</subject><subject>Radiation</subject><subject>Radiators</subject><subject>Simulation</subject><subject>Spectrum allocation</subject><subject>Substrates</subject><subject>Wireless communications</subject><issn>1759-0787</issn><issn>1759-0795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kE1Lw0AQhhdRsFZ_gLeA5-jMJvt1LEFbIehBxWOYJLuSki83ieK_N6VFD-JphuF9noGXsUuEawRUN0-ohAGlFUcA5FofscXuFIIy4vhn1-qUnQ3DFkAqrdWCiaRreirGoJyoDnNqy6Cp6rpq7Gh9-EkfNqB2tG1Lget8INbBa7p6OGcnjurBXhzmkr3c3T4nmzB9XN8nqzQsIlRjGLsYnZTCYA6EkZNGQARWash1zrl2VGqMdWklCRKABcXc8hyBK2MiLqIlu9p7e9-9T3YYs203-XZ-mXGFYGaHVHMK96nCd8Pgrct6XzXkvzKEbNdO9qedmYkODDW5r8o3-6v-n_oG1EpjTA</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Jose, Melvin Chamakalayil</creator><creator>Radha, Sankararajan</creator><creator>Sreeja, Balakrishnapillai Suseela</creator><creator>Gulam Nabi Alsath, Mohammed</creator><creator>Kumar, Pratap</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-4568-8879</orcidid><orcidid>https://orcid.org/0000-0002-4640-4567</orcidid></search><sort><creationdate>20221001</creationdate><title>Compact dual-band millimeter-wave antenna for 5G WLAN</title><author>Jose, Melvin Chamakalayil ; Radha, Sankararajan ; Sreeja, Balakrishnapillai Suseela ; Gulam Nabi Alsath, Mohammed ; Kumar, Pratap</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-4f41f66591b0a13f695030e680b8b228fad8148de6a5a501ca42e2b1027993253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antenna Design, Modelling and Measurements</topic><topic>Antenna radiation patterns</topic><topic>Antennas</topic><topic>Bandwidths</topic><topic>Design</topic><topic>Geometry</topic><topic>Impedance matching</topic><topic>Local area networks</topic><topic>Microstrip antennas</topic><topic>Millimeter waves</topic><topic>Radiation</topic><topic>Radiators</topic><topic>Simulation</topic><topic>Spectrum allocation</topic><topic>Substrates</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jose, Melvin Chamakalayil</creatorcontrib><creatorcontrib>Radha, Sankararajan</creatorcontrib><creatorcontrib>Sreeja, Balakrishnapillai Suseela</creatorcontrib><creatorcontrib>Gulam Nabi Alsath, Mohammed</creatorcontrib><creatorcontrib>Kumar, Pratap</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>International journal of microwave and wireless technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jose, Melvin Chamakalayil</au><au>Radha, Sankararajan</au><au>Sreeja, Balakrishnapillai Suseela</au><au>Gulam Nabi Alsath, Mohammed</au><au>Kumar, Pratap</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compact dual-band millimeter-wave antenna for 5G WLAN</atitle><jtitle>International journal of microwave and wireless technologies</jtitle><addtitle>Int. J. Microw. Wireless Technol</addtitle><date>2022-10-01</date><risdate>2022</risdate><volume>14</volume><issue>8</issue><spage>981</spage><epage>988</epage><pages>981-988</pages><issn>1759-0787</issn><eissn>1759-0795</eissn><abstract>This paper presents a novel compact dual-band printed antenna with an omnidirectional radiation pattern for 5G WLAN. The antenna element comprises a star-shaped patch with six disc-shaped elements at the top and a defected ground structure at the bottom, having a radius of 3.77 mm for both. The proper feeding point and alignment with its element parameters help to achieve good impedance matching. The proposed antenna has a single center feed, a low profile, and a straightforward compact structure without any feeding complexity. A high reception fidelity antenna with comparable bandwidth and moderate gain is presented. The prototype radiator was printed on a 4 mm radius and a 1.6 mm thick dielectric substrate (Rogers RT/Duroid 5880), with a dielectric constant of 2.2. The designed antenna is fabricated and measured to validate the simulation result. The measured impedance bandwidth of 1.3 GHz (27.5–28.8 GHz) and 2.2 GHz (32.45–34.65 GHz) with a respective measured gain of 1.1 and 3.2 dBi are achieved at 28 and 34 GHz. The simulated radiation efficiency of above 95% is achieved for both bands. A good agreement between simulated and measured results of the proposed work shows that the proposed antenna is suitable for 5G short-range WLAN communications.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S1759078721001288</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4568-8879</orcidid><orcidid>https://orcid.org/0000-0002-4640-4567</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1759-0787
ispartof International journal of microwave and wireless technologies, 2022-10, Vol.14 (8), p.981-988
issn 1759-0787
1759-0795
language eng
recordid cdi_proquest_journals_2710922867
source Cambridge Journals Online
subjects Antenna Design, Modelling and Measurements
Antenna radiation patterns
Antennas
Bandwidths
Design
Geometry
Impedance matching
Local area networks
Microstrip antennas
Millimeter waves
Radiation
Radiators
Simulation
Spectrum allocation
Substrates
Wireless communications
title Compact dual-band millimeter-wave antenna for 5G WLAN
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T16%3A13%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compact%20dual-band%20millimeter-wave%20antenna%20for%205G%20WLAN&rft.jtitle=International%20journal%20of%20microwave%20and%20wireless%20technologies&rft.au=Jose,%20Melvin%20Chamakalayil&rft.date=2022-10-01&rft.volume=14&rft.issue=8&rft.spage=981&rft.epage=988&rft.pages=981-988&rft.issn=1759-0787&rft.eissn=1759-0795&rft_id=info:doi/10.1017/S1759078721001288&rft_dat=%3Cproquest_cross%3E2710922867%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2710922867&rft_id=info:pmid/&rft_cupid=10_1017_S1759078721001288&rfr_iscdi=true