Compact dual-band millimeter-wave antenna for 5G WLAN
This paper presents a novel compact dual-band printed antenna with an omnidirectional radiation pattern for 5G WLAN. The antenna element comprises a star-shaped patch with six disc-shaped elements at the top and a defected ground structure at the bottom, having a radius of 3.77 mm for both. The prop...
Gespeichert in:
Veröffentlicht in: | International journal of microwave and wireless technologies 2022-10, Vol.14 (8), p.981-988 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 988 |
---|---|
container_issue | 8 |
container_start_page | 981 |
container_title | International journal of microwave and wireless technologies |
container_volume | 14 |
creator | Jose, Melvin Chamakalayil Radha, Sankararajan Sreeja, Balakrishnapillai Suseela Gulam Nabi Alsath, Mohammed Kumar, Pratap |
description | This paper presents a novel compact dual-band printed antenna with an omnidirectional radiation pattern for 5G WLAN. The antenna element comprises a star-shaped patch with six disc-shaped elements at the top and a defected ground structure at the bottom, having a radius of 3.77 mm for both. The proper feeding point and alignment with its element parameters help to achieve good impedance matching. The proposed antenna has a single center feed, a low profile, and a straightforward compact structure without any feeding complexity. A high reception fidelity antenna with comparable bandwidth and moderate gain is presented. The prototype radiator was printed on a 4 mm radius and a 1.6 mm thick dielectric substrate (Rogers RT/Duroid 5880), with a dielectric constant of 2.2. The designed antenna is fabricated and measured to validate the simulation result. The measured impedance bandwidth of 1.3 GHz (27.5–28.8 GHz) and 2.2 GHz (32.45–34.65 GHz) with a respective measured gain of 1.1 and 3.2 dBi are achieved at 28 and 34 GHz. The simulated radiation efficiency of above 95% is achieved for both bands. A good agreement between simulated and measured results of the proposed work shows that the proposed antenna is suitable for 5G short-range WLAN communications. |
doi_str_mv | 10.1017/S1759078721001288 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2710922867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1759078721001288</cupid><sourcerecordid>2710922867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-4f41f66591b0a13f695030e680b8b228fad8148de6a5a501ca42e2b1027993253</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFZ_gLeA5-jMJvt1LEFbIehBxWOYJLuSki83ieK_N6VFD-JphuF9noGXsUuEawRUN0-ohAGlFUcA5FofscXuFIIy4vhn1-qUnQ3DFkAqrdWCiaRreirGoJyoDnNqy6Cp6rpq7Gh9-EkfNqB2tG1Lget8INbBa7p6OGcnjurBXhzmkr3c3T4nmzB9XN8nqzQsIlRjGLsYnZTCYA6EkZNGQARWash1zrl2VGqMdWklCRKABcXc8hyBK2MiLqIlu9p7e9-9T3YYs203-XZ-mXGFYGaHVHMK96nCd8Pgrct6XzXkvzKEbNdO9qedmYkODDW5r8o3-6v-n_oG1EpjTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2710922867</pqid></control><display><type>article</type><title>Compact dual-band millimeter-wave antenna for 5G WLAN</title><source>Cambridge Journals Online</source><creator>Jose, Melvin Chamakalayil ; Radha, Sankararajan ; Sreeja, Balakrishnapillai Suseela ; Gulam Nabi Alsath, Mohammed ; Kumar, Pratap</creator><creatorcontrib>Jose, Melvin Chamakalayil ; Radha, Sankararajan ; Sreeja, Balakrishnapillai Suseela ; Gulam Nabi Alsath, Mohammed ; Kumar, Pratap</creatorcontrib><description>This paper presents a novel compact dual-band printed antenna with an omnidirectional radiation pattern for 5G WLAN. The antenna element comprises a star-shaped patch with six disc-shaped elements at the top and a defected ground structure at the bottom, having a radius of 3.77 mm for both. The proper feeding point and alignment with its element parameters help to achieve good impedance matching. The proposed antenna has a single center feed, a low profile, and a straightforward compact structure without any feeding complexity. A high reception fidelity antenna with comparable bandwidth and moderate gain is presented. The prototype radiator was printed on a 4 mm radius and a 1.6 mm thick dielectric substrate (Rogers RT/Duroid 5880), with a dielectric constant of 2.2. The designed antenna is fabricated and measured to validate the simulation result. The measured impedance bandwidth of 1.3 GHz (27.5–28.8 GHz) and 2.2 GHz (32.45–34.65 GHz) with a respective measured gain of 1.1 and 3.2 dBi are achieved at 28 and 34 GHz. The simulated radiation efficiency of above 95% is achieved for both bands. A good agreement between simulated and measured results of the proposed work shows that the proposed antenna is suitable for 5G short-range WLAN communications.</description><identifier>ISSN: 1759-0787</identifier><identifier>EISSN: 1759-0795</identifier><identifier>DOI: 10.1017/S1759078721001288</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Antenna Design, Modelling and Measurements ; Antenna radiation patterns ; Antennas ; Bandwidths ; Design ; Geometry ; Impedance matching ; Local area networks ; Microstrip antennas ; Millimeter waves ; Radiation ; Radiators ; Simulation ; Spectrum allocation ; Substrates ; Wireless communications</subject><ispartof>International journal of microwave and wireless technologies, 2022-10, Vol.14 (8), p.981-988</ispartof><rights>Copyright © The Author(s), 2021. Published by Cambridge University Press in association with the European Microwave Association</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-4f41f66591b0a13f695030e680b8b228fad8148de6a5a501ca42e2b1027993253</citedby><cites>FETCH-LOGICAL-c317t-4f41f66591b0a13f695030e680b8b228fad8148de6a5a501ca42e2b1027993253</cites><orcidid>0000-0002-4568-8879 ; 0000-0002-4640-4567</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1759078721001288/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Jose, Melvin Chamakalayil</creatorcontrib><creatorcontrib>Radha, Sankararajan</creatorcontrib><creatorcontrib>Sreeja, Balakrishnapillai Suseela</creatorcontrib><creatorcontrib>Gulam Nabi Alsath, Mohammed</creatorcontrib><creatorcontrib>Kumar, Pratap</creatorcontrib><title>Compact dual-band millimeter-wave antenna for 5G WLAN</title><title>International journal of microwave and wireless technologies</title><addtitle>Int. J. Microw. Wireless Technol</addtitle><description>This paper presents a novel compact dual-band printed antenna with an omnidirectional radiation pattern for 5G WLAN. The antenna element comprises a star-shaped patch with six disc-shaped elements at the top and a defected ground structure at the bottom, having a radius of 3.77 mm for both. The proper feeding point and alignment with its element parameters help to achieve good impedance matching. The proposed antenna has a single center feed, a low profile, and a straightforward compact structure without any feeding complexity. A high reception fidelity antenna with comparable bandwidth and moderate gain is presented. The prototype radiator was printed on a 4 mm radius and a 1.6 mm thick dielectric substrate (Rogers RT/Duroid 5880), with a dielectric constant of 2.2. The designed antenna is fabricated and measured to validate the simulation result. The measured impedance bandwidth of 1.3 GHz (27.5–28.8 GHz) and 2.2 GHz (32.45–34.65 GHz) with a respective measured gain of 1.1 and 3.2 dBi are achieved at 28 and 34 GHz. The simulated radiation efficiency of above 95% is achieved for both bands. A good agreement between simulated and measured results of the proposed work shows that the proposed antenna is suitable for 5G short-range WLAN communications.</description><subject>Antenna Design, Modelling and Measurements</subject><subject>Antenna radiation patterns</subject><subject>Antennas</subject><subject>Bandwidths</subject><subject>Design</subject><subject>Geometry</subject><subject>Impedance matching</subject><subject>Local area networks</subject><subject>Microstrip antennas</subject><subject>Millimeter waves</subject><subject>Radiation</subject><subject>Radiators</subject><subject>Simulation</subject><subject>Spectrum allocation</subject><subject>Substrates</subject><subject>Wireless communications</subject><issn>1759-0787</issn><issn>1759-0795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kE1Lw0AQhhdRsFZ_gLeA5-jMJvt1LEFbIehBxWOYJLuSki83ieK_N6VFD-JphuF9noGXsUuEawRUN0-ohAGlFUcA5FofscXuFIIy4vhn1-qUnQ3DFkAqrdWCiaRreirGoJyoDnNqy6Cp6rpq7Gh9-EkfNqB2tG1Lget8INbBa7p6OGcnjurBXhzmkr3c3T4nmzB9XN8nqzQsIlRjGLsYnZTCYA6EkZNGQARWash1zrl2VGqMdWklCRKABcXc8hyBK2MiLqIlu9p7e9-9T3YYs203-XZ-mXGFYGaHVHMK96nCd8Pgrct6XzXkvzKEbNdO9qedmYkODDW5r8o3-6v-n_oG1EpjTA</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Jose, Melvin Chamakalayil</creator><creator>Radha, Sankararajan</creator><creator>Sreeja, Balakrishnapillai Suseela</creator><creator>Gulam Nabi Alsath, Mohammed</creator><creator>Kumar, Pratap</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-4568-8879</orcidid><orcidid>https://orcid.org/0000-0002-4640-4567</orcidid></search><sort><creationdate>20221001</creationdate><title>Compact dual-band millimeter-wave antenna for 5G WLAN</title><author>Jose, Melvin Chamakalayil ; Radha, Sankararajan ; Sreeja, Balakrishnapillai Suseela ; Gulam Nabi Alsath, Mohammed ; Kumar, Pratap</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-4f41f66591b0a13f695030e680b8b228fad8148de6a5a501ca42e2b1027993253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antenna Design, Modelling and Measurements</topic><topic>Antenna radiation patterns</topic><topic>Antennas</topic><topic>Bandwidths</topic><topic>Design</topic><topic>Geometry</topic><topic>Impedance matching</topic><topic>Local area networks</topic><topic>Microstrip antennas</topic><topic>Millimeter waves</topic><topic>Radiation</topic><topic>Radiators</topic><topic>Simulation</topic><topic>Spectrum allocation</topic><topic>Substrates</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jose, Melvin Chamakalayil</creatorcontrib><creatorcontrib>Radha, Sankararajan</creatorcontrib><creatorcontrib>Sreeja, Balakrishnapillai Suseela</creatorcontrib><creatorcontrib>Gulam Nabi Alsath, Mohammed</creatorcontrib><creatorcontrib>Kumar, Pratap</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>International journal of microwave and wireless technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jose, Melvin Chamakalayil</au><au>Radha, Sankararajan</au><au>Sreeja, Balakrishnapillai Suseela</au><au>Gulam Nabi Alsath, Mohammed</au><au>Kumar, Pratap</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compact dual-band millimeter-wave antenna for 5G WLAN</atitle><jtitle>International journal of microwave and wireless technologies</jtitle><addtitle>Int. J. Microw. Wireless Technol</addtitle><date>2022-10-01</date><risdate>2022</risdate><volume>14</volume><issue>8</issue><spage>981</spage><epage>988</epage><pages>981-988</pages><issn>1759-0787</issn><eissn>1759-0795</eissn><abstract>This paper presents a novel compact dual-band printed antenna with an omnidirectional radiation pattern for 5G WLAN. The antenna element comprises a star-shaped patch with six disc-shaped elements at the top and a defected ground structure at the bottom, having a radius of 3.77 mm for both. The proper feeding point and alignment with its element parameters help to achieve good impedance matching. The proposed antenna has a single center feed, a low profile, and a straightforward compact structure without any feeding complexity. A high reception fidelity antenna with comparable bandwidth and moderate gain is presented. The prototype radiator was printed on a 4 mm radius and a 1.6 mm thick dielectric substrate (Rogers RT/Duroid 5880), with a dielectric constant of 2.2. The designed antenna is fabricated and measured to validate the simulation result. The measured impedance bandwidth of 1.3 GHz (27.5–28.8 GHz) and 2.2 GHz (32.45–34.65 GHz) with a respective measured gain of 1.1 and 3.2 dBi are achieved at 28 and 34 GHz. The simulated radiation efficiency of above 95% is achieved for both bands. A good agreement between simulated and measured results of the proposed work shows that the proposed antenna is suitable for 5G short-range WLAN communications.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S1759078721001288</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4568-8879</orcidid><orcidid>https://orcid.org/0000-0002-4640-4567</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1759-0787 |
ispartof | International journal of microwave and wireless technologies, 2022-10, Vol.14 (8), p.981-988 |
issn | 1759-0787 1759-0795 |
language | eng |
recordid | cdi_proquest_journals_2710922867 |
source | Cambridge Journals Online |
subjects | Antenna Design, Modelling and Measurements Antenna radiation patterns Antennas Bandwidths Design Geometry Impedance matching Local area networks Microstrip antennas Millimeter waves Radiation Radiators Simulation Spectrum allocation Substrates Wireless communications |
title | Compact dual-band millimeter-wave antenna for 5G WLAN |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T16%3A13%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compact%20dual-band%20millimeter-wave%20antenna%20for%205G%20WLAN&rft.jtitle=International%20journal%20of%20microwave%20and%20wireless%20technologies&rft.au=Jose,%20Melvin%20Chamakalayil&rft.date=2022-10-01&rft.volume=14&rft.issue=8&rft.spage=981&rft.epage=988&rft.pages=981-988&rft.issn=1759-0787&rft.eissn=1759-0795&rft_id=info:doi/10.1017/S1759078721001288&rft_dat=%3Cproquest_cross%3E2710922867%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2710922867&rft_id=info:pmid/&rft_cupid=10_1017_S1759078721001288&rfr_iscdi=true |