Identification of informational and probabilistic independence by adaptive thresholding

The independence assumptions help Bayesian network classifier (BNC), e.g., Naive Bayes (NB), reduce structure complexity and perform surprisingly well in many real-world applications. Semi-naive Bayesian techniques seek to improve the classification performance by relaxing the attribute independence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Intelligent data analysis 2022-01, Vol.26 (5), p.1139-1160
Hauptverfasser: Li, Kuo, Wang, Aimin, Wang, Limin, Fan, Hangqi, Zhang, Shuai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1160
container_issue 5
container_start_page 1139
container_title Intelligent data analysis
container_volume 26
creator Li, Kuo
Wang, Aimin
Wang, Limin
Fan, Hangqi
Zhang, Shuai
description The independence assumptions help Bayesian network classifier (BNC), e.g., Naive Bayes (NB), reduce structure complexity and perform surprisingly well in many real-world applications. Semi-naive Bayesian techniques seek to improve the classification performance by relaxing the attribute independence assumption. However, the study of dependence rather than independence has received more attention during the past decade and the validity of independence assumptions needs to be further explored. In this paper, a novel learning technique, called Adaptive Independence Thresholding (AIT), is proposed to automatically identify the informational independence and probabilistic independence. AIT can respectively tune the network topologies of BNC learned from training data and testing instance under the framework of target learning. Zero-one loss, bias, variance and conditional log likelihood are introduced to compare the classification performance in the experimental study. The extensive experimental results on a collection of 36 benchmark datasets from the UCI machine learning repository show that AIT is more effective than other learning techniques (such as structure extension, attribute weighting) and helps make the final BNCs achieve remarkable classification improvements.
doi_str_mv 10.3233/IDA-215942
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2709946477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.3233_IDA-215942</sage_id><sourcerecordid>2709946477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c250t-bd773c2bd4ecf9cae5233ae97b3a2d50ef0e64ed97aaa8e74abb0ffd0a47e7fc3</originalsourceid><addsrcrecordid>eNptkE1LxDAQhoMouK5e_AUFD4JQTdN00x6X9WthwYuitzBJJrtZuk1NqrD_3mgFL17mg3mYeecl5Lyg1yUry5vl7TxnRdVwdkAmRSWKnBesPkw1reucz8TbMTmJcUsp5YzyCXldGuwGZ52Gwfku8zZznfVh99NCm0Fnsj54Bcq1Lg5Op7nBHlPoNGZqn4GBfnCfmA2bgHHjW-O69Sk5stBGPPvNU_Jyf_e8eMxXTw_LxXyVa1bRIVdGiFIzZThq22jAKn0B2AhVAjMVRUtxxtE0AgBqFByUotYaClygsLqckotxb9L4_oFxkFv_EZLwKJmgTcNnPF2YkquR0sHHGNDKPrgdhL0sqPw2Tibj5Ghcgi9HOMIa_9b9Q34BFwhvYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2709946477</pqid></control><display><type>article</type><title>Identification of informational and probabilistic independence by adaptive thresholding</title><source>EBSCOhost Business Source Complete</source><creator>Li, Kuo ; Wang, Aimin ; Wang, Limin ; Fan, Hangqi ; Zhang, Shuai</creator><creatorcontrib>Li, Kuo ; Wang, Aimin ; Wang, Limin ; Fan, Hangqi ; Zhang, Shuai</creatorcontrib><description>The independence assumptions help Bayesian network classifier (BNC), e.g., Naive Bayes (NB), reduce structure complexity and perform surprisingly well in many real-world applications. Semi-naive Bayesian techniques seek to improve the classification performance by relaxing the attribute independence assumption. However, the study of dependence rather than independence has received more attention during the past decade and the validity of independence assumptions needs to be further explored. In this paper, a novel learning technique, called Adaptive Independence Thresholding (AIT), is proposed to automatically identify the informational independence and probabilistic independence. AIT can respectively tune the network topologies of BNC learned from training data and testing instance under the framework of target learning. Zero-one loss, bias, variance and conditional log likelihood are introduced to compare the classification performance in the experimental study. The extensive experimental results on a collection of 36 benchmark datasets from the UCI machine learning repository show that AIT is more effective than other learning techniques (such as structure extension, attribute weighting) and helps make the final BNCs achieve remarkable classification improvements.</description><identifier>ISSN: 1088-467X</identifier><identifier>EISSN: 1571-4128</identifier><identifier>DOI: 10.3233/IDA-215942</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Bayesian analysis ; Classification ; Machine learning ; Network topologies</subject><ispartof>Intelligent data analysis, 2022-01, Vol.26 (5), p.1139-1160</ispartof><rights>2022 – IOS Press. All rights reserved.</rights><rights>Copyright IOS Press BV 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c250t-bd773c2bd4ecf9cae5233ae97b3a2d50ef0e64ed97aaa8e74abb0ffd0a47e7fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Kuo</creatorcontrib><creatorcontrib>Wang, Aimin</creatorcontrib><creatorcontrib>Wang, Limin</creatorcontrib><creatorcontrib>Fan, Hangqi</creatorcontrib><creatorcontrib>Zhang, Shuai</creatorcontrib><title>Identification of informational and probabilistic independence by adaptive thresholding</title><title>Intelligent data analysis</title><description>The independence assumptions help Bayesian network classifier (BNC), e.g., Naive Bayes (NB), reduce structure complexity and perform surprisingly well in many real-world applications. Semi-naive Bayesian techniques seek to improve the classification performance by relaxing the attribute independence assumption. However, the study of dependence rather than independence has received more attention during the past decade and the validity of independence assumptions needs to be further explored. In this paper, a novel learning technique, called Adaptive Independence Thresholding (AIT), is proposed to automatically identify the informational independence and probabilistic independence. AIT can respectively tune the network topologies of BNC learned from training data and testing instance under the framework of target learning. Zero-one loss, bias, variance and conditional log likelihood are introduced to compare the classification performance in the experimental study. The extensive experimental results on a collection of 36 benchmark datasets from the UCI machine learning repository show that AIT is more effective than other learning techniques (such as structure extension, attribute weighting) and helps make the final BNCs achieve remarkable classification improvements.</description><subject>Bayesian analysis</subject><subject>Classification</subject><subject>Machine learning</subject><subject>Network topologies</subject><issn>1088-467X</issn><issn>1571-4128</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNptkE1LxDAQhoMouK5e_AUFD4JQTdN00x6X9WthwYuitzBJJrtZuk1NqrD_3mgFL17mg3mYeecl5Lyg1yUry5vl7TxnRdVwdkAmRSWKnBesPkw1reucz8TbMTmJcUsp5YzyCXldGuwGZ52Gwfku8zZznfVh99NCm0Fnsj54Bcq1Lg5Op7nBHlPoNGZqn4GBfnCfmA2bgHHjW-O69Sk5stBGPPvNU_Jyf_e8eMxXTw_LxXyVa1bRIVdGiFIzZThq22jAKn0B2AhVAjMVRUtxxtE0AgBqFByUotYaClygsLqckotxb9L4_oFxkFv_EZLwKJmgTcNnPF2YkquR0sHHGNDKPrgdhL0sqPw2Tibj5Ghcgi9HOMIa_9b9Q34BFwhvYw</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Li, Kuo</creator><creator>Wang, Aimin</creator><creator>Wang, Limin</creator><creator>Fan, Hangqi</creator><creator>Zhang, Shuai</creator><general>SAGE Publications</general><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20220101</creationdate><title>Identification of informational and probabilistic independence by adaptive thresholding</title><author>Li, Kuo ; Wang, Aimin ; Wang, Limin ; Fan, Hangqi ; Zhang, Shuai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c250t-bd773c2bd4ecf9cae5233ae97b3a2d50ef0e64ed97aaa8e74abb0ffd0a47e7fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bayesian analysis</topic><topic>Classification</topic><topic>Machine learning</topic><topic>Network topologies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Kuo</creatorcontrib><creatorcontrib>Wang, Aimin</creatorcontrib><creatorcontrib>Wang, Limin</creatorcontrib><creatorcontrib>Fan, Hangqi</creatorcontrib><creatorcontrib>Zhang, Shuai</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Intelligent data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Kuo</au><au>Wang, Aimin</au><au>Wang, Limin</au><au>Fan, Hangqi</au><au>Zhang, Shuai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of informational and probabilistic independence by adaptive thresholding</atitle><jtitle>Intelligent data analysis</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>26</volume><issue>5</issue><spage>1139</spage><epage>1160</epage><pages>1139-1160</pages><issn>1088-467X</issn><eissn>1571-4128</eissn><abstract>The independence assumptions help Bayesian network classifier (BNC), e.g., Naive Bayes (NB), reduce structure complexity and perform surprisingly well in many real-world applications. Semi-naive Bayesian techniques seek to improve the classification performance by relaxing the attribute independence assumption. However, the study of dependence rather than independence has received more attention during the past decade and the validity of independence assumptions needs to be further explored. In this paper, a novel learning technique, called Adaptive Independence Thresholding (AIT), is proposed to automatically identify the informational independence and probabilistic independence. AIT can respectively tune the network topologies of BNC learned from training data and testing instance under the framework of target learning. Zero-one loss, bias, variance and conditional log likelihood are introduced to compare the classification performance in the experimental study. The extensive experimental results on a collection of 36 benchmark datasets from the UCI machine learning repository show that AIT is more effective than other learning techniques (such as structure extension, attribute weighting) and helps make the final BNCs achieve remarkable classification improvements.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.3233/IDA-215942</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1088-467X
ispartof Intelligent data analysis, 2022-01, Vol.26 (5), p.1139-1160
issn 1088-467X
1571-4128
language eng
recordid cdi_proquest_journals_2709946477
source EBSCOhost Business Source Complete
subjects Bayesian analysis
Classification
Machine learning
Network topologies
title Identification of informational and probabilistic independence by adaptive thresholding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T22%3A05%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20informational%20and%20probabilistic%20independence%20by%20adaptive%20thresholding&rft.jtitle=Intelligent%20data%20analysis&rft.au=Li,%20Kuo&rft.date=2022-01-01&rft.volume=26&rft.issue=5&rft.spage=1139&rft.epage=1160&rft.pages=1139-1160&rft.issn=1088-467X&rft.eissn=1571-4128&rft_id=info:doi/10.3233/IDA-215942&rft_dat=%3Cproquest_cross%3E2709946477%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2709946477&rft_id=info:pmid/&rft_sage_id=10.3233_IDA-215942&rfr_iscdi=true