Virtual elements on agglomerated finite elements to increase the critical time step in elastodynamic simulations

In this article, we use the first‐order virtual element method (VEM) to investigate the effect of shape quality of polyhedra in the estimation of the critical time step for explicit three‐dimensional elastodynamic finite element (FE) simulations. Low‐quality FEs are common when meshing realistic com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 2022-10, Vol.123 (19), p.4702-4725
Hauptverfasser: Sukumar, N., Tupek, Michael R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4725
container_issue 19
container_start_page 4702
container_title International journal for numerical methods in engineering
container_volume 123
creator Sukumar, N.
Tupek, Michael R.
description In this article, we use the first‐order virtual element method (VEM) to investigate the effect of shape quality of polyhedra in the estimation of the critical time step for explicit three‐dimensional elastodynamic finite element (FE) simulations. Low‐quality FEs are common when meshing realistic complex components, and while tetrahedral meshing technology is generally robust, meshing algorithms cannot guarantee high‐quality meshes for arbitrary geometries or for non‐water‐tight computer‐aided design models. For reliable simulations on such meshes, we consider FE meshes with tetrahedral and prismatic elements that have badly shaped elements—tetrahedra with dihedral angles close to 0∘$$ {0}^{\circ } $$ and 180∘$$ 18{0}^{\circ } $$, and slender prisms with triangular faces that have short edges—and agglomerate such “bad” elements with neighboring elements to form a larger polyhedral virtual element. On each element, the element‐eigenvalue inequality is used to estimate the critical time step. For a suite of illustrative FE meshes with ϵ$$ \epsilon $$ being a mesh‐coordinate parameter that leads to poor mesh quality, we show that adopting VEM on the agglomerated polyhedra yield critical time steps that are insensitive as ϵ→0$$ \epsilon \to 0 $$. The significant reduction in solution time on meshes with agglomerated virtual elements vis‐à‐vis tetrahedral meshes is demonstrated through explicit dynamics simulations on a tapered beam.
doi_str_mv 10.1002/nme.7052
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2709834030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2709834030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2932-98120e19136f0588607abb8f07626431210e832cbe14d9fae6aa28331f306df53</originalsourceid><addsrcrecordid>eNp10E1LAzEQBuAgCtYq-BMCXrxsnSTdr6OU-gFVL-o1pLuTmrKbrEkW6b83tYInT3N4H2aGl5BLBjMGwG9sj7MScn5EJgzqMgMO5TGZpKjO8rpip-QshC0AYzmICRnejY-j6ih22KONgTpL1WbTuR69ithSbayJ-JdHR41tPKqANH4gbbyJpkkboumRhohDyhNXIbp2Z1VvGhpMP3YqGmfDOTnRqgt48Tun5O1u-bp4yFYv94-L21XW8FrwLH3KAVnNRKEhr6oCSrVeVxrKghdzwTgDrARv1sjmba0VFkrxSgimBRStzsWUXB32Dt59jhii3LrR23RS8hLqSsxBQFLXB9V4F4JHLQdveuV3koHc9ylTn3LfZ6LZgX6ZDnf_Ovn8tPzx37Wed1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2709834030</pqid></control><display><type>article</type><title>Virtual elements on agglomerated finite elements to increase the critical time step in elastodynamic simulations</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sukumar, N. ; Tupek, Michael R.</creator><creatorcontrib>Sukumar, N. ; Tupek, Michael R.</creatorcontrib><description>In this article, we use the first‐order virtual element method (VEM) to investigate the effect of shape quality of polyhedra in the estimation of the critical time step for explicit three‐dimensional elastodynamic finite element (FE) simulations. Low‐quality FEs are common when meshing realistic complex components, and while tetrahedral meshing technology is generally robust, meshing algorithms cannot guarantee high‐quality meshes for arbitrary geometries or for non‐water‐tight computer‐aided design models. For reliable simulations on such meshes, we consider FE meshes with tetrahedral and prismatic elements that have badly shaped elements—tetrahedra with dihedral angles close to 0∘$$ {0}^{\circ } $$ and 180∘$$ 18{0}^{\circ } $$, and slender prisms with triangular faces that have short edges—and agglomerate such “bad” elements with neighboring elements to form a larger polyhedral virtual element. On each element, the element‐eigenvalue inequality is used to estimate the critical time step. For a suite of illustrative FE meshes with ϵ$$ \epsilon $$ being a mesh‐coordinate parameter that leads to poor mesh quality, we show that adopting VEM on the agglomerated polyhedra yield critical time steps that are insensitive as ϵ→0$$ \epsilon \to 0 $$. The significant reduction in solution time on meshes with agglomerated virtual elements vis‐à‐vis tetrahedral meshes is demonstrated through explicit dynamics simulations on a tapered beam.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.7052</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Algorithms ; Angles (geometry) ; Computer simulation ; consistency ; critical time step ; Eigenvalues ; Elastodynamics ; Finite element method ; hourglass stability ; linear elastodynamics ; Meshing ; Polyhedra ; Prisms ; Shape effects ; Simulation ; sliver tetrahedron ; Tetrahedra ; VEM</subject><ispartof>International journal for numerical methods in engineering, 2022-10, Vol.123 (19), p.4702-4725</ispartof><rights>2022 John Wiley &amp; Sons Ltd.</rights><rights>2022 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2932-98120e19136f0588607abb8f07626431210e832cbe14d9fae6aa28331f306df53</citedby><cites>FETCH-LOGICAL-c2932-98120e19136f0588607abb8f07626431210e832cbe14d9fae6aa28331f306df53</cites><orcidid>0000-0001-6744-7673</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.7052$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.7052$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Sukumar, N.</creatorcontrib><creatorcontrib>Tupek, Michael R.</creatorcontrib><title>Virtual elements on agglomerated finite elements to increase the critical time step in elastodynamic simulations</title><title>International journal for numerical methods in engineering</title><description>In this article, we use the first‐order virtual element method (VEM) to investigate the effect of shape quality of polyhedra in the estimation of the critical time step for explicit three‐dimensional elastodynamic finite element (FE) simulations. Low‐quality FEs are common when meshing realistic complex components, and while tetrahedral meshing technology is generally robust, meshing algorithms cannot guarantee high‐quality meshes for arbitrary geometries or for non‐water‐tight computer‐aided design models. For reliable simulations on such meshes, we consider FE meshes with tetrahedral and prismatic elements that have badly shaped elements—tetrahedra with dihedral angles close to 0∘$$ {0}^{\circ } $$ and 180∘$$ 18{0}^{\circ } $$, and slender prisms with triangular faces that have short edges—and agglomerate such “bad” elements with neighboring elements to form a larger polyhedral virtual element. On each element, the element‐eigenvalue inequality is used to estimate the critical time step. For a suite of illustrative FE meshes with ϵ$$ \epsilon $$ being a mesh‐coordinate parameter that leads to poor mesh quality, we show that adopting VEM on the agglomerated polyhedra yield critical time steps that are insensitive as ϵ→0$$ \epsilon \to 0 $$. The significant reduction in solution time on meshes with agglomerated virtual elements vis‐à‐vis tetrahedral meshes is demonstrated through explicit dynamics simulations on a tapered beam.</description><subject>Algorithms</subject><subject>Angles (geometry)</subject><subject>Computer simulation</subject><subject>consistency</subject><subject>critical time step</subject><subject>Eigenvalues</subject><subject>Elastodynamics</subject><subject>Finite element method</subject><subject>hourglass stability</subject><subject>linear elastodynamics</subject><subject>Meshing</subject><subject>Polyhedra</subject><subject>Prisms</subject><subject>Shape effects</subject><subject>Simulation</subject><subject>sliver tetrahedron</subject><subject>Tetrahedra</subject><subject>VEM</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp10E1LAzEQBuAgCtYq-BMCXrxsnSTdr6OU-gFVL-o1pLuTmrKbrEkW6b83tYInT3N4H2aGl5BLBjMGwG9sj7MScn5EJgzqMgMO5TGZpKjO8rpip-QshC0AYzmICRnejY-j6ih22KONgTpL1WbTuR69ithSbayJ-JdHR41tPKqANH4gbbyJpkkboumRhohDyhNXIbp2Z1VvGhpMP3YqGmfDOTnRqgt48Tun5O1u-bp4yFYv94-L21XW8FrwLH3KAVnNRKEhr6oCSrVeVxrKghdzwTgDrARv1sjmba0VFkrxSgimBRStzsWUXB32Dt59jhii3LrR23RS8hLqSsxBQFLXB9V4F4JHLQdveuV3koHc9ylTn3LfZ6LZgX6ZDnf_Ovn8tPzx37Wed1g</recordid><startdate>20221015</startdate><enddate>20221015</enddate><creator>Sukumar, N.</creator><creator>Tupek, Michael R.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6744-7673</orcidid></search><sort><creationdate>20221015</creationdate><title>Virtual elements on agglomerated finite elements to increase the critical time step in elastodynamic simulations</title><author>Sukumar, N. ; Tupek, Michael R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2932-98120e19136f0588607abb8f07626431210e832cbe14d9fae6aa28331f306df53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Angles (geometry)</topic><topic>Computer simulation</topic><topic>consistency</topic><topic>critical time step</topic><topic>Eigenvalues</topic><topic>Elastodynamics</topic><topic>Finite element method</topic><topic>hourglass stability</topic><topic>linear elastodynamics</topic><topic>Meshing</topic><topic>Polyhedra</topic><topic>Prisms</topic><topic>Shape effects</topic><topic>Simulation</topic><topic>sliver tetrahedron</topic><topic>Tetrahedra</topic><topic>VEM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sukumar, N.</creatorcontrib><creatorcontrib>Tupek, Michael R.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sukumar, N.</au><au>Tupek, Michael R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Virtual elements on agglomerated finite elements to increase the critical time step in elastodynamic simulations</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2022-10-15</date><risdate>2022</risdate><volume>123</volume><issue>19</issue><spage>4702</spage><epage>4725</epage><pages>4702-4725</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>In this article, we use the first‐order virtual element method (VEM) to investigate the effect of shape quality of polyhedra in the estimation of the critical time step for explicit three‐dimensional elastodynamic finite element (FE) simulations. Low‐quality FEs are common when meshing realistic complex components, and while tetrahedral meshing technology is generally robust, meshing algorithms cannot guarantee high‐quality meshes for arbitrary geometries or for non‐water‐tight computer‐aided design models. For reliable simulations on such meshes, we consider FE meshes with tetrahedral and prismatic elements that have badly shaped elements—tetrahedra with dihedral angles close to 0∘$$ {0}^{\circ } $$ and 180∘$$ 18{0}^{\circ } $$, and slender prisms with triangular faces that have short edges—and agglomerate such “bad” elements with neighboring elements to form a larger polyhedral virtual element. On each element, the element‐eigenvalue inequality is used to estimate the critical time step. For a suite of illustrative FE meshes with ϵ$$ \epsilon $$ being a mesh‐coordinate parameter that leads to poor mesh quality, we show that adopting VEM on the agglomerated polyhedra yield critical time steps that are insensitive as ϵ→0$$ \epsilon \to 0 $$. The significant reduction in solution time on meshes with agglomerated virtual elements vis‐à‐vis tetrahedral meshes is demonstrated through explicit dynamics simulations on a tapered beam.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/nme.7052</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0001-6744-7673</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2022-10, Vol.123 (19), p.4702-4725
issn 0029-5981
1097-0207
language eng
recordid cdi_proquest_journals_2709834030
source Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Angles (geometry)
Computer simulation
consistency
critical time step
Eigenvalues
Elastodynamics
Finite element method
hourglass stability
linear elastodynamics
Meshing
Polyhedra
Prisms
Shape effects
Simulation
sliver tetrahedron
Tetrahedra
VEM
title Virtual elements on agglomerated finite elements to increase the critical time step in elastodynamic simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A13%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Virtual%20elements%20on%20agglomerated%20finite%20elements%20to%20increase%20the%20critical%20time%20step%20in%20elastodynamic%20simulations&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Sukumar,%20N.&rft.date=2022-10-15&rft.volume=123&rft.issue=19&rft.spage=4702&rft.epage=4725&rft.pages=4702-4725&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.7052&rft_dat=%3Cproquest_cross%3E2709834030%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2709834030&rft_id=info:pmid/&rfr_iscdi=true