Virtual elements on agglomerated finite elements to increase the critical time step in elastodynamic simulations
In this article, we use the first‐order virtual element method (VEM) to investigate the effect of shape quality of polyhedra in the estimation of the critical time step for explicit three‐dimensional elastodynamic finite element (FE) simulations. Low‐quality FEs are common when meshing realistic com...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in engineering 2022-10, Vol.123 (19), p.4702-4725 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4725 |
---|---|
container_issue | 19 |
container_start_page | 4702 |
container_title | International journal for numerical methods in engineering |
container_volume | 123 |
creator | Sukumar, N. Tupek, Michael R. |
description | In this article, we use the first‐order virtual element method (VEM) to investigate the effect of shape quality of polyhedra in the estimation of the critical time step for explicit three‐dimensional elastodynamic finite element (FE) simulations. Low‐quality FEs are common when meshing realistic complex components, and while tetrahedral meshing technology is generally robust, meshing algorithms cannot guarantee high‐quality meshes for arbitrary geometries or for non‐water‐tight computer‐aided design models. For reliable simulations on such meshes, we consider FE meshes with tetrahedral and prismatic elements that have badly shaped elements—tetrahedra with dihedral angles close to 0∘$$ {0}^{\circ } $$ and 180∘$$ 18{0}^{\circ } $$, and slender prisms with triangular faces that have short edges—and agglomerate such “bad” elements with neighboring elements to form a larger polyhedral virtual element. On each element, the element‐eigenvalue inequality is used to estimate the critical time step. For a suite of illustrative FE meshes with ϵ$$ \epsilon $$ being a mesh‐coordinate parameter that leads to poor mesh quality, we show that adopting VEM on the agglomerated polyhedra yield critical time steps that are insensitive as ϵ→0$$ \epsilon \to 0 $$. The significant reduction in solution time on meshes with agglomerated virtual elements vis‐à‐vis tetrahedral meshes is demonstrated through explicit dynamics simulations on a tapered beam. |
doi_str_mv | 10.1002/nme.7052 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2709834030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2709834030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2932-98120e19136f0588607abb8f07626431210e832cbe14d9fae6aa28331f306df53</originalsourceid><addsrcrecordid>eNp10E1LAzEQBuAgCtYq-BMCXrxsnSTdr6OU-gFVL-o1pLuTmrKbrEkW6b83tYInT3N4H2aGl5BLBjMGwG9sj7MScn5EJgzqMgMO5TGZpKjO8rpip-QshC0AYzmICRnejY-j6ih22KONgTpL1WbTuR69ithSbayJ-JdHR41tPKqANH4gbbyJpkkboumRhohDyhNXIbp2Z1VvGhpMP3YqGmfDOTnRqgt48Tun5O1u-bp4yFYv94-L21XW8FrwLH3KAVnNRKEhr6oCSrVeVxrKghdzwTgDrARv1sjmba0VFkrxSgimBRStzsWUXB32Dt59jhii3LrR23RS8hLqSsxBQFLXB9V4F4JHLQdveuV3koHc9ylTn3LfZ6LZgX6ZDnf_Ovn8tPzx37Wed1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2709834030</pqid></control><display><type>article</type><title>Virtual elements on agglomerated finite elements to increase the critical time step in elastodynamic simulations</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sukumar, N. ; Tupek, Michael R.</creator><creatorcontrib>Sukumar, N. ; Tupek, Michael R.</creatorcontrib><description>In this article, we use the first‐order virtual element method (VEM) to investigate the effect of shape quality of polyhedra in the estimation of the critical time step for explicit three‐dimensional elastodynamic finite element (FE) simulations. Low‐quality FEs are common when meshing realistic complex components, and while tetrahedral meshing technology is generally robust, meshing algorithms cannot guarantee high‐quality meshes for arbitrary geometries or for non‐water‐tight computer‐aided design models. For reliable simulations on such meshes, we consider FE meshes with tetrahedral and prismatic elements that have badly shaped elements—tetrahedra with dihedral angles close to 0∘$$ {0}^{\circ } $$ and 180∘$$ 18{0}^{\circ } $$, and slender prisms with triangular faces that have short edges—and agglomerate such “bad” elements with neighboring elements to form a larger polyhedral virtual element. On each element, the element‐eigenvalue inequality is used to estimate the critical time step. For a suite of illustrative FE meshes with ϵ$$ \epsilon $$ being a mesh‐coordinate parameter that leads to poor mesh quality, we show that adopting VEM on the agglomerated polyhedra yield critical time steps that are insensitive as ϵ→0$$ \epsilon \to 0 $$. The significant reduction in solution time on meshes with agglomerated virtual elements vis‐à‐vis tetrahedral meshes is demonstrated through explicit dynamics simulations on a tapered beam.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.7052</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Algorithms ; Angles (geometry) ; Computer simulation ; consistency ; critical time step ; Eigenvalues ; Elastodynamics ; Finite element method ; hourglass stability ; linear elastodynamics ; Meshing ; Polyhedra ; Prisms ; Shape effects ; Simulation ; sliver tetrahedron ; Tetrahedra ; VEM</subject><ispartof>International journal for numerical methods in engineering, 2022-10, Vol.123 (19), p.4702-4725</ispartof><rights>2022 John Wiley & Sons Ltd.</rights><rights>2022 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2932-98120e19136f0588607abb8f07626431210e832cbe14d9fae6aa28331f306df53</citedby><cites>FETCH-LOGICAL-c2932-98120e19136f0588607abb8f07626431210e832cbe14d9fae6aa28331f306df53</cites><orcidid>0000-0001-6744-7673</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.7052$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.7052$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Sukumar, N.</creatorcontrib><creatorcontrib>Tupek, Michael R.</creatorcontrib><title>Virtual elements on agglomerated finite elements to increase the critical time step in elastodynamic simulations</title><title>International journal for numerical methods in engineering</title><description>In this article, we use the first‐order virtual element method (VEM) to investigate the effect of shape quality of polyhedra in the estimation of the critical time step for explicit three‐dimensional elastodynamic finite element (FE) simulations. Low‐quality FEs are common when meshing realistic complex components, and while tetrahedral meshing technology is generally robust, meshing algorithms cannot guarantee high‐quality meshes for arbitrary geometries or for non‐water‐tight computer‐aided design models. For reliable simulations on such meshes, we consider FE meshes with tetrahedral and prismatic elements that have badly shaped elements—tetrahedra with dihedral angles close to 0∘$$ {0}^{\circ } $$ and 180∘$$ 18{0}^{\circ } $$, and slender prisms with triangular faces that have short edges—and agglomerate such “bad” elements with neighboring elements to form a larger polyhedral virtual element. On each element, the element‐eigenvalue inequality is used to estimate the critical time step. For a suite of illustrative FE meshes with ϵ$$ \epsilon $$ being a mesh‐coordinate parameter that leads to poor mesh quality, we show that adopting VEM on the agglomerated polyhedra yield critical time steps that are insensitive as ϵ→0$$ \epsilon \to 0 $$. The significant reduction in solution time on meshes with agglomerated virtual elements vis‐à‐vis tetrahedral meshes is demonstrated through explicit dynamics simulations on a tapered beam.</description><subject>Algorithms</subject><subject>Angles (geometry)</subject><subject>Computer simulation</subject><subject>consistency</subject><subject>critical time step</subject><subject>Eigenvalues</subject><subject>Elastodynamics</subject><subject>Finite element method</subject><subject>hourglass stability</subject><subject>linear elastodynamics</subject><subject>Meshing</subject><subject>Polyhedra</subject><subject>Prisms</subject><subject>Shape effects</subject><subject>Simulation</subject><subject>sliver tetrahedron</subject><subject>Tetrahedra</subject><subject>VEM</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp10E1LAzEQBuAgCtYq-BMCXrxsnSTdr6OU-gFVL-o1pLuTmrKbrEkW6b83tYInT3N4H2aGl5BLBjMGwG9sj7MScn5EJgzqMgMO5TGZpKjO8rpip-QshC0AYzmICRnejY-j6ih22KONgTpL1WbTuR69ithSbayJ-JdHR41tPKqANH4gbbyJpkkboumRhohDyhNXIbp2Z1VvGhpMP3YqGmfDOTnRqgt48Tun5O1u-bp4yFYv94-L21XW8FrwLH3KAVnNRKEhr6oCSrVeVxrKghdzwTgDrARv1sjmba0VFkrxSgimBRStzsWUXB32Dt59jhii3LrR23RS8hLqSsxBQFLXB9V4F4JHLQdveuV3koHc9ylTn3LfZ6LZgX6ZDnf_Ovn8tPzx37Wed1g</recordid><startdate>20221015</startdate><enddate>20221015</enddate><creator>Sukumar, N.</creator><creator>Tupek, Michael R.</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6744-7673</orcidid></search><sort><creationdate>20221015</creationdate><title>Virtual elements on agglomerated finite elements to increase the critical time step in elastodynamic simulations</title><author>Sukumar, N. ; Tupek, Michael R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2932-98120e19136f0588607abb8f07626431210e832cbe14d9fae6aa28331f306df53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Angles (geometry)</topic><topic>Computer simulation</topic><topic>consistency</topic><topic>critical time step</topic><topic>Eigenvalues</topic><topic>Elastodynamics</topic><topic>Finite element method</topic><topic>hourglass stability</topic><topic>linear elastodynamics</topic><topic>Meshing</topic><topic>Polyhedra</topic><topic>Prisms</topic><topic>Shape effects</topic><topic>Simulation</topic><topic>sliver tetrahedron</topic><topic>Tetrahedra</topic><topic>VEM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sukumar, N.</creatorcontrib><creatorcontrib>Tupek, Michael R.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sukumar, N.</au><au>Tupek, Michael R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Virtual elements on agglomerated finite elements to increase the critical time step in elastodynamic simulations</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2022-10-15</date><risdate>2022</risdate><volume>123</volume><issue>19</issue><spage>4702</spage><epage>4725</epage><pages>4702-4725</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>In this article, we use the first‐order virtual element method (VEM) to investigate the effect of shape quality of polyhedra in the estimation of the critical time step for explicit three‐dimensional elastodynamic finite element (FE) simulations. Low‐quality FEs are common when meshing realistic complex components, and while tetrahedral meshing technology is generally robust, meshing algorithms cannot guarantee high‐quality meshes for arbitrary geometries or for non‐water‐tight computer‐aided design models. For reliable simulations on such meshes, we consider FE meshes with tetrahedral and prismatic elements that have badly shaped elements—tetrahedra with dihedral angles close to 0∘$$ {0}^{\circ } $$ and 180∘$$ 18{0}^{\circ } $$, and slender prisms with triangular faces that have short edges—and agglomerate such “bad” elements with neighboring elements to form a larger polyhedral virtual element. On each element, the element‐eigenvalue inequality is used to estimate the critical time step. For a suite of illustrative FE meshes with ϵ$$ \epsilon $$ being a mesh‐coordinate parameter that leads to poor mesh quality, we show that adopting VEM on the agglomerated polyhedra yield critical time steps that are insensitive as ϵ→0$$ \epsilon \to 0 $$. The significant reduction in solution time on meshes with agglomerated virtual elements vis‐à‐vis tetrahedral meshes is demonstrated through explicit dynamics simulations on a tapered beam.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/nme.7052</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0001-6744-7673</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 2022-10, Vol.123 (19), p.4702-4725 |
issn | 0029-5981 1097-0207 |
language | eng |
recordid | cdi_proquest_journals_2709834030 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms Angles (geometry) Computer simulation consistency critical time step Eigenvalues Elastodynamics Finite element method hourglass stability linear elastodynamics Meshing Polyhedra Prisms Shape effects Simulation sliver tetrahedron Tetrahedra VEM |
title | Virtual elements on agglomerated finite elements to increase the critical time step in elastodynamic simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A13%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Virtual%20elements%20on%20agglomerated%20finite%20elements%20to%20increase%20the%20critical%20time%20step%20in%20elastodynamic%20simulations&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Sukumar,%20N.&rft.date=2022-10-15&rft.volume=123&rft.issue=19&rft.spage=4702&rft.epage=4725&rft.pages=4702-4725&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.7052&rft_dat=%3Cproquest_cross%3E2709834030%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2709834030&rft_id=info:pmid/&rfr_iscdi=true |