Quantum advantages for transportation tasks: projectiles, rockets and quantum backflow
Consider a scenario where a quantum particle is initially prepared in some bounded region of space and left to propagate freely. After some time, we verify if the particle has reached some distant target region. We find that there exist "ultrafast" ("ultraslow") quantum states, w...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-09 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Trillo, David Le, Thinh P Navascues, Miguel |
description | Consider a scenario where a quantum particle is initially prepared in some bounded region of space and left to propagate freely. After some time, we verify if the particle has reached some distant target region. We find that there exist "ultrafast" ("ultraslow") quantum states, whose probability of arrival is greater (smaller) than that of any classical particle prepared in the same region with the same momentum distribution. For both projectiles and rockets, we prove that the quantum advantage, quantified by the difference between the quantum and optimal classical arrival probabilities, is limited by the Bracken-Melloy constant \(c_{bm}\), originally introduced to study the phenomenon of quantum backflow. In this regard, we substantiate the \(29\)-year-old conjecture that \(c_{bm}\approx 0.038\) by proving the bounds \(0.0315\leq c_{bm}\leq 0.072\). Finally, we show that, in a modified projectile scenario where the initial position distribution of the particle is also fixed, the quantum advantage can reach \(0.1262\). |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2709806268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2709806268</sourcerecordid><originalsourceid>FETCH-proquest_journals_27098062683</originalsourceid><addsrcrecordid>eNqNjMsKwjAQRYMgWLT_MODWQkzsQ7eiuBXErYxtKn2YtJmp_r5d9ANcnQvncmYiUFpvo2yn1EKERLWUUiWpimMdiPt1QMvDG7D4jANfhqB0Htijpc55Rq6cBUZq6ACdd7XJuWoNbcC7vDFMgLaAfqo8MW_K1n1XYl5iSyacuBTr8-l2vERjoR8M8aN2g7ejeqhU7jOZqCTT_71-sVlCZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2709806268</pqid></control><display><type>article</type><title>Quantum advantages for transportation tasks: projectiles, rockets and quantum backflow</title><source>Freely Accessible Journals</source><creator>Trillo, David ; Le, Thinh P ; Navascues, Miguel</creator><creatorcontrib>Trillo, David ; Le, Thinh P ; Navascues, Miguel</creatorcontrib><description>Consider a scenario where a quantum particle is initially prepared in some bounded region of space and left to propagate freely. After some time, we verify if the particle has reached some distant target region. We find that there exist "ultrafast" ("ultraslow") quantum states, whose probability of arrival is greater (smaller) than that of any classical particle prepared in the same region with the same momentum distribution. For both projectiles and rockets, we prove that the quantum advantage, quantified by the difference between the quantum and optimal classical arrival probabilities, is limited by the Bracken-Melloy constant \(c_{bm}\), originally introduced to study the phenomenon of quantum backflow. In this regard, we substantiate the \(29\)-year-old conjecture that \(c_{bm}\approx 0.038\) by proving the bounds \(0.0315\leq c_{bm}\leq 0.072\). Finally, we show that, in a modified projectile scenario where the initial position distribution of the particle is also fixed, the quantum advantage can reach \(0.1262\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Momentum ; Projectiles ; Relativistic particles ; Rockets ; Upper bounds</subject><ispartof>arXiv.org, 2023-09</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Trillo, David</creatorcontrib><creatorcontrib>Le, Thinh P</creatorcontrib><creatorcontrib>Navascues, Miguel</creatorcontrib><title>Quantum advantages for transportation tasks: projectiles, rockets and quantum backflow</title><title>arXiv.org</title><description>Consider a scenario where a quantum particle is initially prepared in some bounded region of space and left to propagate freely. After some time, we verify if the particle has reached some distant target region. We find that there exist "ultrafast" ("ultraslow") quantum states, whose probability of arrival is greater (smaller) than that of any classical particle prepared in the same region with the same momentum distribution. For both projectiles and rockets, we prove that the quantum advantage, quantified by the difference between the quantum and optimal classical arrival probabilities, is limited by the Bracken-Melloy constant \(c_{bm}\), originally introduced to study the phenomenon of quantum backflow. In this regard, we substantiate the \(29\)-year-old conjecture that \(c_{bm}\approx 0.038\) by proving the bounds \(0.0315\leq c_{bm}\leq 0.072\). Finally, we show that, in a modified projectile scenario where the initial position distribution of the particle is also fixed, the quantum advantage can reach \(0.1262\).</description><subject>Momentum</subject><subject>Projectiles</subject><subject>Relativistic particles</subject><subject>Rockets</subject><subject>Upper bounds</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjMsKwjAQRYMgWLT_MODWQkzsQ7eiuBXErYxtKn2YtJmp_r5d9ANcnQvncmYiUFpvo2yn1EKERLWUUiWpimMdiPt1QMvDG7D4jANfhqB0Htijpc55Rq6cBUZq6ACdd7XJuWoNbcC7vDFMgLaAfqo8MW_K1n1XYl5iSyacuBTr8-l2vERjoR8M8aN2g7ejeqhU7jOZqCTT_71-sVlCZQ</recordid><startdate>20230926</startdate><enddate>20230926</enddate><creator>Trillo, David</creator><creator>Le, Thinh P</creator><creator>Navascues, Miguel</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230926</creationdate><title>Quantum advantages for transportation tasks: projectiles, rockets and quantum backflow</title><author>Trillo, David ; Le, Thinh P ; Navascues, Miguel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27098062683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Momentum</topic><topic>Projectiles</topic><topic>Relativistic particles</topic><topic>Rockets</topic><topic>Upper bounds</topic><toplevel>online_resources</toplevel><creatorcontrib>Trillo, David</creatorcontrib><creatorcontrib>Le, Thinh P</creatorcontrib><creatorcontrib>Navascues, Miguel</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trillo, David</au><au>Le, Thinh P</au><au>Navascues, Miguel</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Quantum advantages for transportation tasks: projectiles, rockets and quantum backflow</atitle><jtitle>arXiv.org</jtitle><date>2023-09-26</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Consider a scenario where a quantum particle is initially prepared in some bounded region of space and left to propagate freely. After some time, we verify if the particle has reached some distant target region. We find that there exist "ultrafast" ("ultraslow") quantum states, whose probability of arrival is greater (smaller) than that of any classical particle prepared in the same region with the same momentum distribution. For both projectiles and rockets, we prove that the quantum advantage, quantified by the difference between the quantum and optimal classical arrival probabilities, is limited by the Bracken-Melloy constant \(c_{bm}\), originally introduced to study the phenomenon of quantum backflow. In this regard, we substantiate the \(29\)-year-old conjecture that \(c_{bm}\approx 0.038\) by proving the bounds \(0.0315\leq c_{bm}\leq 0.072\). Finally, we show that, in a modified projectile scenario where the initial position distribution of the particle is also fixed, the quantum advantage can reach \(0.1262\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2709806268 |
source | Freely Accessible Journals |
subjects | Momentum Projectiles Relativistic particles Rockets Upper bounds |
title | Quantum advantages for transportation tasks: projectiles, rockets and quantum backflow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T12%3A25%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Quantum%20advantages%20for%20transportation%20tasks:%20projectiles,%20rockets%20and%20quantum%20backflow&rft.jtitle=arXiv.org&rft.au=Trillo,%20David&rft.date=2023-09-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2709806268%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2709806268&rft_id=info:pmid/&rfr_iscdi=true |