The Impact of Interface Defects on Thermal Boundary Resistance at a Si|C Interface
Due to the increasing complexity and miniaturization of microelectronics, material interfaces are now the dominant source of thermal resistance in many integrated circuits and electronic devices. While the literature on thermal boundary resistance is extensive, the theory remains poorly understood....
Gespeichert in:
Veröffentlicht in: | Physica status solidi. A, Applications and materials science Applications and materials science, 2022-09, Vol.219 (17), p.n/a |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 17 |
container_start_page | |
container_title | Physica status solidi. A, Applications and materials science |
container_volume | 219 |
creator | Stanley, Christopher Martin |
description | Due to the increasing complexity and miniaturization of microelectronics, material interfaces are now the dominant source of thermal resistance in many integrated circuits and electronic devices. While the literature on thermal boundary resistance is extensive, the theory remains poorly understood. This is particularly true for the case of defects at the interface. Data and results on three defects at a Si|C interface are presented—an interstitial N pair and two different substitutional Ge's. It is found that the interstitial N pair, as well as one of the Ge defects, reduces thermal boundary conductivity considerably whereas the substitutional Ge placed directly at the interface is largely transparent.
For the first time, it is shown that a defect (substitutional Ge, red) is effectively transparent to heat flow across a material interface. The interface occurs at the junction of Si (cyan) and C (green) inside a nanowire. An interstitial NiNi is also studied, and as expected, increases Kapitza resistance associated with the defect. |
doi_str_mv | 10.1002/pssa.202200175 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2709793615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2709793615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2475-4ae7b3e0dd11bd7a0da105ee2b6e3bea328e59d5de7623b3dae058ba1791341d3</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsFavnhc8p87uZrPNsdavQkFp63mZZCeY0iZxN0EK_nhTKu3R08zhed5hXsZuBYwEgLxvQsCRBCkBhNFnbCDGiYwSJdLz4w5wya5CWAPEOjZiwBarT-KzbYN5y-uCz6qWfIE58UcqKG8DryveI36LG_5Qd5VDv-MLCmVoseoxbDnyZfkzPanX7KLATaCbvzlkH89Pq-lrNH97mU0n8yiXsdFRjGQyReCcEJkzCA4FaCKZJaQyQiXHpFOnHZlEqkw5JNDjDIVJhYqFU0N2d8htfP3VUWjtuu581Z-00kBqUpUI3VOjA5X7OgRPhW18ue2_sALsvje7780ee-uF9CB8lxva_UPb9-VycnJ_AcfGcWM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2709793615</pqid></control><display><type>article</type><title>The Impact of Interface Defects on Thermal Boundary Resistance at a Si|C Interface</title><source>Access via Wiley Online Library</source><creator>Stanley, Christopher Martin</creator><creatorcontrib>Stanley, Christopher Martin</creatorcontrib><description>Due to the increasing complexity and miniaturization of microelectronics, material interfaces are now the dominant source of thermal resistance in many integrated circuits and electronic devices. While the literature on thermal boundary resistance is extensive, the theory remains poorly understood. This is particularly true for the case of defects at the interface. Data and results on three defects at a Si|C interface are presented—an interstitial N pair and two different substitutional Ge's. It is found that the interstitial N pair, as well as one of the Ge defects, reduces thermal boundary conductivity considerably whereas the substitutional Ge placed directly at the interface is largely transparent.
For the first time, it is shown that a defect (substitutional Ge, red) is effectively transparent to heat flow across a material interface. The interface occurs at the junction of Si (cyan) and C (green) inside a nanowire. An interstitial NiNi is also studied, and as expected, increases Kapitza resistance associated with the defect.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.202200175</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Defects ; Electronic devices ; Integrated circuits ; interface defects ; Kapitza resistance ; Miniaturization ; Si|C interface ; TBC ; thermal boundary resistance (TBR) ; Thermal resistance</subject><ispartof>Physica status solidi. A, Applications and materials science, 2022-09, Vol.219 (17), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2475-4ae7b3e0dd11bd7a0da105ee2b6e3bea328e59d5de7623b3dae058ba1791341d3</citedby><cites>FETCH-LOGICAL-c2475-4ae7b3e0dd11bd7a0da105ee2b6e3bea328e59d5de7623b3dae058ba1791341d3</cites><orcidid>0000-0002-0595-3877</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.202200175$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.202200175$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Stanley, Christopher Martin</creatorcontrib><title>The Impact of Interface Defects on Thermal Boundary Resistance at a Si|C Interface</title><title>Physica status solidi. A, Applications and materials science</title><description>Due to the increasing complexity and miniaturization of microelectronics, material interfaces are now the dominant source of thermal resistance in many integrated circuits and electronic devices. While the literature on thermal boundary resistance is extensive, the theory remains poorly understood. This is particularly true for the case of defects at the interface. Data and results on three defects at a Si|C interface are presented—an interstitial N pair and two different substitutional Ge's. It is found that the interstitial N pair, as well as one of the Ge defects, reduces thermal boundary conductivity considerably whereas the substitutional Ge placed directly at the interface is largely transparent.
For the first time, it is shown that a defect (substitutional Ge, red) is effectively transparent to heat flow across a material interface. The interface occurs at the junction of Si (cyan) and C (green) inside a nanowire. An interstitial NiNi is also studied, and as expected, increases Kapitza resistance associated with the defect.</description><subject>Defects</subject><subject>Electronic devices</subject><subject>Integrated circuits</subject><subject>interface defects</subject><subject>Kapitza resistance</subject><subject>Miniaturization</subject><subject>Si|C interface</subject><subject>TBC</subject><subject>thermal boundary resistance (TBR)</subject><subject>Thermal resistance</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRsFavnhc8p87uZrPNsdavQkFp63mZZCeY0iZxN0EK_nhTKu3R08zhed5hXsZuBYwEgLxvQsCRBCkBhNFnbCDGiYwSJdLz4w5wya5CWAPEOjZiwBarT-KzbYN5y-uCz6qWfIE58UcqKG8DryveI36LG_5Qd5VDv-MLCmVoseoxbDnyZfkzPanX7KLATaCbvzlkH89Pq-lrNH97mU0n8yiXsdFRjGQyReCcEJkzCA4FaCKZJaQyQiXHpFOnHZlEqkw5JNDjDIVJhYqFU0N2d8htfP3VUWjtuu581Z-00kBqUpUI3VOjA5X7OgRPhW18ue2_sALsvje7780ee-uF9CB8lxva_UPb9-VycnJ_AcfGcWM</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Stanley, Christopher Martin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0595-3877</orcidid></search><sort><creationdate>202209</creationdate><title>The Impact of Interface Defects on Thermal Boundary Resistance at a Si|C Interface</title><author>Stanley, Christopher Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2475-4ae7b3e0dd11bd7a0da105ee2b6e3bea328e59d5de7623b3dae058ba1791341d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Defects</topic><topic>Electronic devices</topic><topic>Integrated circuits</topic><topic>interface defects</topic><topic>Kapitza resistance</topic><topic>Miniaturization</topic><topic>Si|C interface</topic><topic>TBC</topic><topic>thermal boundary resistance (TBR)</topic><topic>Thermal resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stanley, Christopher Martin</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stanley, Christopher Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Impact of Interface Defects on Thermal Boundary Resistance at a Si|C Interface</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2022-09</date><risdate>2022</risdate><volume>219</volume><issue>17</issue><epage>n/a</epage><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>Due to the increasing complexity and miniaturization of microelectronics, material interfaces are now the dominant source of thermal resistance in many integrated circuits and electronic devices. While the literature on thermal boundary resistance is extensive, the theory remains poorly understood. This is particularly true for the case of defects at the interface. Data and results on three defects at a Si|C interface are presented—an interstitial N pair and two different substitutional Ge's. It is found that the interstitial N pair, as well as one of the Ge defects, reduces thermal boundary conductivity considerably whereas the substitutional Ge placed directly at the interface is largely transparent.
For the first time, it is shown that a defect (substitutional Ge, red) is effectively transparent to heat flow across a material interface. The interface occurs at the junction of Si (cyan) and C (green) inside a nanowire. An interstitial NiNi is also studied, and as expected, increases Kapitza resistance associated with the defect.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssa.202200175</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-0595-3877</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1862-6300 |
ispartof | Physica status solidi. A, Applications and materials science, 2022-09, Vol.219 (17), p.n/a |
issn | 1862-6300 1862-6319 |
language | eng |
recordid | cdi_proquest_journals_2709793615 |
source | Access via Wiley Online Library |
subjects | Defects Electronic devices Integrated circuits interface defects Kapitza resistance Miniaturization Si|C interface TBC thermal boundary resistance (TBR) Thermal resistance |
title | The Impact of Interface Defects on Thermal Boundary Resistance at a Si|C Interface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A44%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Impact%20of%20Interface%20Defects%20on%20Thermal%20Boundary%20Resistance%20at%20a%20Si%7CC%20Interface&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Stanley,%20Christopher%20Martin&rft.date=2022-09&rft.volume=219&rft.issue=17&rft.epage=n/a&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.202200175&rft_dat=%3Cproquest_cross%3E2709793615%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2709793615&rft_id=info:pmid/&rfr_iscdi=true |