The Impact of Interface Defects on Thermal Boundary Resistance at a Si|C Interface

Due to the increasing complexity and miniaturization of microelectronics, material interfaces are now the dominant source of thermal resistance in many integrated circuits and electronic devices. While the literature on thermal boundary resistance is extensive, the theory remains poorly understood....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. A, Applications and materials science Applications and materials science, 2022-09, Vol.219 (17), p.n/a
1. Verfasser: Stanley, Christopher Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 17
container_start_page
container_title Physica status solidi. A, Applications and materials science
container_volume 219
creator Stanley, Christopher Martin
description Due to the increasing complexity and miniaturization of microelectronics, material interfaces are now the dominant source of thermal resistance in many integrated circuits and electronic devices. While the literature on thermal boundary resistance is extensive, the theory remains poorly understood. This is particularly true for the case of defects at the interface. Data and results on three defects at a Si|C interface are presented—an interstitial N pair and two different substitutional Ge's. It is found that the interstitial N pair, as well as one of the Ge defects, reduces thermal boundary conductivity considerably whereas the substitutional Ge placed directly at the interface is largely transparent. For the first time, it is shown that a defect (substitutional Ge, red) is effectively transparent to heat flow across a material interface. The interface occurs at the junction of Si (cyan) and C (green) inside a nanowire. An interstitial NiNi is also studied, and as expected, increases Kapitza resistance associated with the defect.
doi_str_mv 10.1002/pssa.202200175
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2709793615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2709793615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2475-4ae7b3e0dd11bd7a0da105ee2b6e3bea328e59d5de7623b3dae058ba1791341d3</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsFavnhc8p87uZrPNsdavQkFp63mZZCeY0iZxN0EK_nhTKu3R08zhed5hXsZuBYwEgLxvQsCRBCkBhNFnbCDGiYwSJdLz4w5wya5CWAPEOjZiwBarT-KzbYN5y-uCz6qWfIE58UcqKG8DryveI36LG_5Qd5VDv-MLCmVoseoxbDnyZfkzPanX7KLATaCbvzlkH89Pq-lrNH97mU0n8yiXsdFRjGQyReCcEJkzCA4FaCKZJaQyQiXHpFOnHZlEqkw5JNDjDIVJhYqFU0N2d8htfP3VUWjtuu581Z-00kBqUpUI3VOjA5X7OgRPhW18ue2_sALsvje7780ee-uF9CB8lxva_UPb9-VycnJ_AcfGcWM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2709793615</pqid></control><display><type>article</type><title>The Impact of Interface Defects on Thermal Boundary Resistance at a Si|C Interface</title><source>Access via Wiley Online Library</source><creator>Stanley, Christopher Martin</creator><creatorcontrib>Stanley, Christopher Martin</creatorcontrib><description>Due to the increasing complexity and miniaturization of microelectronics, material interfaces are now the dominant source of thermal resistance in many integrated circuits and electronic devices. While the literature on thermal boundary resistance is extensive, the theory remains poorly understood. This is particularly true for the case of defects at the interface. Data and results on three defects at a Si|C interface are presented—an interstitial N pair and two different substitutional Ge's. It is found that the interstitial N pair, as well as one of the Ge defects, reduces thermal boundary conductivity considerably whereas the substitutional Ge placed directly at the interface is largely transparent. For the first time, it is shown that a defect (substitutional Ge, red) is effectively transparent to heat flow across a material interface. The interface occurs at the junction of Si (cyan) and C (green) inside a nanowire. An interstitial NiNi is also studied, and as expected, increases Kapitza resistance associated with the defect.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.202200175</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Defects ; Electronic devices ; Integrated circuits ; interface defects ; Kapitza resistance ; Miniaturization ; Si|C interface ; TBC ; thermal boundary resistance (TBR) ; Thermal resistance</subject><ispartof>Physica status solidi. A, Applications and materials science, 2022-09, Vol.219 (17), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2475-4ae7b3e0dd11bd7a0da105ee2b6e3bea328e59d5de7623b3dae058ba1791341d3</citedby><cites>FETCH-LOGICAL-c2475-4ae7b3e0dd11bd7a0da105ee2b6e3bea328e59d5de7623b3dae058ba1791341d3</cites><orcidid>0000-0002-0595-3877</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.202200175$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.202200175$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Stanley, Christopher Martin</creatorcontrib><title>The Impact of Interface Defects on Thermal Boundary Resistance at a Si|C Interface</title><title>Physica status solidi. A, Applications and materials science</title><description>Due to the increasing complexity and miniaturization of microelectronics, material interfaces are now the dominant source of thermal resistance in many integrated circuits and electronic devices. While the literature on thermal boundary resistance is extensive, the theory remains poorly understood. This is particularly true for the case of defects at the interface. Data and results on three defects at a Si|C interface are presented—an interstitial N pair and two different substitutional Ge's. It is found that the interstitial N pair, as well as one of the Ge defects, reduces thermal boundary conductivity considerably whereas the substitutional Ge placed directly at the interface is largely transparent. For the first time, it is shown that a defect (substitutional Ge, red) is effectively transparent to heat flow across a material interface. The interface occurs at the junction of Si (cyan) and C (green) inside a nanowire. An interstitial NiNi is also studied, and as expected, increases Kapitza resistance associated with the defect.</description><subject>Defects</subject><subject>Electronic devices</subject><subject>Integrated circuits</subject><subject>interface defects</subject><subject>Kapitza resistance</subject><subject>Miniaturization</subject><subject>Si|C interface</subject><subject>TBC</subject><subject>thermal boundary resistance (TBR)</subject><subject>Thermal resistance</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRsFavnhc8p87uZrPNsdavQkFp63mZZCeY0iZxN0EK_nhTKu3R08zhed5hXsZuBYwEgLxvQsCRBCkBhNFnbCDGiYwSJdLz4w5wya5CWAPEOjZiwBarT-KzbYN5y-uCz6qWfIE58UcqKG8DryveI36LG_5Qd5VDv-MLCmVoseoxbDnyZfkzPanX7KLATaCbvzlkH89Pq-lrNH97mU0n8yiXsdFRjGQyReCcEJkzCA4FaCKZJaQyQiXHpFOnHZlEqkw5JNDjDIVJhYqFU0N2d8htfP3VUWjtuu581Z-00kBqUpUI3VOjA5X7OgRPhW18ue2_sALsvje7780ee-uF9CB8lxva_UPb9-VycnJ_AcfGcWM</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Stanley, Christopher Martin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0595-3877</orcidid></search><sort><creationdate>202209</creationdate><title>The Impact of Interface Defects on Thermal Boundary Resistance at a Si|C Interface</title><author>Stanley, Christopher Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2475-4ae7b3e0dd11bd7a0da105ee2b6e3bea328e59d5de7623b3dae058ba1791341d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Defects</topic><topic>Electronic devices</topic><topic>Integrated circuits</topic><topic>interface defects</topic><topic>Kapitza resistance</topic><topic>Miniaturization</topic><topic>Si|C interface</topic><topic>TBC</topic><topic>thermal boundary resistance (TBR)</topic><topic>Thermal resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stanley, Christopher Martin</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stanley, Christopher Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Impact of Interface Defects on Thermal Boundary Resistance at a Si|C Interface</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2022-09</date><risdate>2022</risdate><volume>219</volume><issue>17</issue><epage>n/a</epage><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>Due to the increasing complexity and miniaturization of microelectronics, material interfaces are now the dominant source of thermal resistance in many integrated circuits and electronic devices. While the literature on thermal boundary resistance is extensive, the theory remains poorly understood. This is particularly true for the case of defects at the interface. Data and results on three defects at a Si|C interface are presented—an interstitial N pair and two different substitutional Ge's. It is found that the interstitial N pair, as well as one of the Ge defects, reduces thermal boundary conductivity considerably whereas the substitutional Ge placed directly at the interface is largely transparent. For the first time, it is shown that a defect (substitutional Ge, red) is effectively transparent to heat flow across a material interface. The interface occurs at the junction of Si (cyan) and C (green) inside a nanowire. An interstitial NiNi is also studied, and as expected, increases Kapitza resistance associated with the defect.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssa.202200175</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-0595-3877</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1862-6300
ispartof Physica status solidi. A, Applications and materials science, 2022-09, Vol.219 (17), p.n/a
issn 1862-6300
1862-6319
language eng
recordid cdi_proquest_journals_2709793615
source Access via Wiley Online Library
subjects Defects
Electronic devices
Integrated circuits
interface defects
Kapitza resistance
Miniaturization
Si|C interface
TBC
thermal boundary resistance (TBR)
Thermal resistance
title The Impact of Interface Defects on Thermal Boundary Resistance at a Si|C Interface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A44%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Impact%20of%20Interface%20Defects%20on%20Thermal%20Boundary%20Resistance%20at%20a%20Si%7CC%20Interface&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Stanley,%20Christopher%20Martin&rft.date=2022-09&rft.volume=219&rft.issue=17&rft.epage=n/a&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.202200175&rft_dat=%3Cproquest_cross%3E2709793615%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2709793615&rft_id=info:pmid/&rfr_iscdi=true