Molecular dynamics determination of Two-dimensional nucleation kinetic coefficient for modeling the faceted growth of Si (111) from an undercooled melt

•Si (111) facet nucleation and growth are investigated from MD simulations.•Mechanisms for the birth and spreading of two-dimensional facets are described.•A nucleation rate-undercooling relationship is proposed.•The MD-derived nucleation model is fitted to a facet growth rate model.•The solidificat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of crystal growth 2022-08, Vol.592, p.126736, Article 126736
Hauptverfasser: Fabiyi, Victor A., Richmond, Tyler, Helenbrook, Brian T., Paek, Eunsu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 126736
container_title Journal of crystal growth
container_volume 592
creator Fabiyi, Victor A.
Richmond, Tyler
Helenbrook, Brian T.
Paek, Eunsu
description •Si (111) facet nucleation and growth are investigated from MD simulations.•Mechanisms for the birth and spreading of two-dimensional facets are described.•A nucleation rate-undercooling relationship is proposed.•The MD-derived nucleation model is fitted to a facet growth rate model.•The solidification front is qualitatively compared to that of the HRG process. The discrepancies between kinetic model predictions and experimental observations of two-dimensional (2D) nucleation-mediated growth of silicon limits modeling reliability for existing and new crystal growth processes. Molecular dynamics (MD) simulations were performed to identify the mechanism of evolution of crystallites on a Si (111) facet and semi-quantitatively describe 2D nucleation kinetics using the forced-velocity solidification (FVS) and free-solidification (FS) MD simulations techniques. Both MD models predicted similar nucleation expressions but gave lesser nucleation energy barriers than predicted from Monte Carlo (MC) nucleation model. The estimated nucleation rate from MD was fitted to a polynuclear growth model to estimate a 2D kinetic model and compared to available experimentally reported growth rates. The Si (111) facet velocity model derived from the kinetic coefficient given in this work generally provided more conservative estimates of undercooling and the minimum undercooling that may result in kinetic roughening transition. In addition, the FVS model implemented in this work provided a unique opportunity for qualitatively describing the behavior of a crystal-melt interface and gave a molecular-level perspective on the interface stability criterion for the growth of single-crystal silicon during the horizontal ribbon growth (HRG) process.
doi_str_mv 10.1016/j.jcrysgro.2022.126736
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2709764265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002202482200224X</els_id><sourcerecordid>2709764265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-11804ad925a6e0b984f77420c92ff31f26beb64a3c8363121cc8223f804de6293</originalsourceid><addsrcrecordid>eNqFUcuO1DAQtBBIDAu_gCxxgUMGu5NxkhtotTykRRxYzpan3d51SOzFdljNl_C7eBQ4c-mWurtKVV2MvZRiL4VUb6f9hOmUb1PcgwDYS1B9qx6xnRz6tjkIAY_ZrlZoBHTDU_Ys50mIipRix35_iTPhOpvE7SmYxWPmlgqlxQdTfAw8On7zEBvrFwq5DszMw4ozbdsfPlDxyDGScx49hcJdTHyJlmYfbnm5I-4MVkrLq8SHcndm_Ob5aynlG-5SXLgJfA2WEsYqxvKF5vKcPXFmzvTib79g3z9c3Vx-aq6_fvx8-f66we7QlUbKQXTGjnAwisRxHDrX9x0IHMG5VjpQRzqqzrQ4tKqVIBEHgNZVlCUFY3vBXm289yn-XCkXPcU1VZNZQy_GXnWgDvVKbVeYYs6JnL5PfjHppKXQ5xD0pP-FoM8h6C2ECny3Aal6-OUp6Xz-EZL1ibBoG_3_KP4AcHKVbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2709764265</pqid></control><display><type>article</type><title>Molecular dynamics determination of Two-dimensional nucleation kinetic coefficient for modeling the faceted growth of Si (111) from an undercooled melt</title><source>Access via ScienceDirect (Elsevier)</source><creator>Fabiyi, Victor A. ; Richmond, Tyler ; Helenbrook, Brian T. ; Paek, Eunsu</creator><creatorcontrib>Fabiyi, Victor A. ; Richmond, Tyler ; Helenbrook, Brian T. ; Paek, Eunsu</creatorcontrib><description>•Si (111) facet nucleation and growth are investigated from MD simulations.•Mechanisms for the birth and spreading of two-dimensional facets are described.•A nucleation rate-undercooling relationship is proposed.•The MD-derived nucleation model is fitted to a facet growth rate model.•The solidification front is qualitatively compared to that of the HRG process. The discrepancies between kinetic model predictions and experimental observations of two-dimensional (2D) nucleation-mediated growth of silicon limits modeling reliability for existing and new crystal growth processes. Molecular dynamics (MD) simulations were performed to identify the mechanism of evolution of crystallites on a Si (111) facet and semi-quantitatively describe 2D nucleation kinetics using the forced-velocity solidification (FVS) and free-solidification (FS) MD simulations techniques. Both MD models predicted similar nucleation expressions but gave lesser nucleation energy barriers than predicted from Monte Carlo (MC) nucleation model. The estimated nucleation rate from MD was fitted to a polynuclear growth model to estimate a 2D kinetic model and compared to available experimentally reported growth rates. The Si (111) facet velocity model derived from the kinetic coefficient given in this work generally provided more conservative estimates of undercooling and the minimum undercooling that may result in kinetic roughening transition. In addition, the FVS model implemented in this work provided a unique opportunity for qualitatively describing the behavior of a crystal-melt interface and gave a molecular-level perspective on the interface stability criterion for the growth of single-crystal silicon during the horizontal ribbon growth (HRG) process.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2022.126736</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Computer simulation ; A1. Growth models ; A2. Growth from melt ; A2. Single crystal growth ; B2. Semiconducting silicon ; B3. Solar cells ; Crystal growth ; Crystallites ; Growth models ; Interface stability ; Kinetic coefficients ; Modelling ; Molecular dynamics ; Nucleation ; Roughening ; Silicon ; Single crystals ; Solidification ; Stability criteria ; Supercooling ; Two dimensional models</subject><ispartof>Journal of crystal growth, 2022-08, Vol.592, p.126736, Article 126736</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier BV Aug 15, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-11804ad925a6e0b984f77420c92ff31f26beb64a3c8363121cc8223f804de6293</citedby><cites>FETCH-LOGICAL-c454t-11804ad925a6e0b984f77420c92ff31f26beb64a3c8363121cc8223f804de6293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcrysgro.2022.126736$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Fabiyi, Victor A.</creatorcontrib><creatorcontrib>Richmond, Tyler</creatorcontrib><creatorcontrib>Helenbrook, Brian T.</creatorcontrib><creatorcontrib>Paek, Eunsu</creatorcontrib><title>Molecular dynamics determination of Two-dimensional nucleation kinetic coefficient for modeling the faceted growth of Si (111) from an undercooled melt</title><title>Journal of crystal growth</title><description>•Si (111) facet nucleation and growth are investigated from MD simulations.•Mechanisms for the birth and spreading of two-dimensional facets are described.•A nucleation rate-undercooling relationship is proposed.•The MD-derived nucleation model is fitted to a facet growth rate model.•The solidification front is qualitatively compared to that of the HRG process. The discrepancies between kinetic model predictions and experimental observations of two-dimensional (2D) nucleation-mediated growth of silicon limits modeling reliability for existing and new crystal growth processes. Molecular dynamics (MD) simulations were performed to identify the mechanism of evolution of crystallites on a Si (111) facet and semi-quantitatively describe 2D nucleation kinetics using the forced-velocity solidification (FVS) and free-solidification (FS) MD simulations techniques. Both MD models predicted similar nucleation expressions but gave lesser nucleation energy barriers than predicted from Monte Carlo (MC) nucleation model. The estimated nucleation rate from MD was fitted to a polynuclear growth model to estimate a 2D kinetic model and compared to available experimentally reported growth rates. The Si (111) facet velocity model derived from the kinetic coefficient given in this work generally provided more conservative estimates of undercooling and the minimum undercooling that may result in kinetic roughening transition. In addition, the FVS model implemented in this work provided a unique opportunity for qualitatively describing the behavior of a crystal-melt interface and gave a molecular-level perspective on the interface stability criterion for the growth of single-crystal silicon during the horizontal ribbon growth (HRG) process.</description><subject>A1. Computer simulation</subject><subject>A1. Growth models</subject><subject>A2. Growth from melt</subject><subject>A2. Single crystal growth</subject><subject>B2. Semiconducting silicon</subject><subject>B3. Solar cells</subject><subject>Crystal growth</subject><subject>Crystallites</subject><subject>Growth models</subject><subject>Interface stability</subject><subject>Kinetic coefficients</subject><subject>Modelling</subject><subject>Molecular dynamics</subject><subject>Nucleation</subject><subject>Roughening</subject><subject>Silicon</subject><subject>Single crystals</subject><subject>Solidification</subject><subject>Stability criteria</subject><subject>Supercooling</subject><subject>Two dimensional models</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFUcuO1DAQtBBIDAu_gCxxgUMGu5NxkhtotTykRRxYzpan3d51SOzFdljNl_C7eBQ4c-mWurtKVV2MvZRiL4VUb6f9hOmUb1PcgwDYS1B9qx6xnRz6tjkIAY_ZrlZoBHTDU_Ys50mIipRix35_iTPhOpvE7SmYxWPmlgqlxQdTfAw8On7zEBvrFwq5DszMw4ozbdsfPlDxyDGScx49hcJdTHyJlmYfbnm5I-4MVkrLq8SHcndm_Ob5aynlG-5SXLgJfA2WEsYqxvKF5vKcPXFmzvTib79g3z9c3Vx-aq6_fvx8-f66we7QlUbKQXTGjnAwisRxHDrX9x0IHMG5VjpQRzqqzrQ4tKqVIBEHgNZVlCUFY3vBXm289yn-XCkXPcU1VZNZQy_GXnWgDvVKbVeYYs6JnL5PfjHppKXQ5xD0pP-FoM8h6C2ECny3Aal6-OUp6Xz-EZL1ibBoG_3_KP4AcHKVbQ</recordid><startdate>20220815</startdate><enddate>20220815</enddate><creator>Fabiyi, Victor A.</creator><creator>Richmond, Tyler</creator><creator>Helenbrook, Brian T.</creator><creator>Paek, Eunsu</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20220815</creationdate><title>Molecular dynamics determination of Two-dimensional nucleation kinetic coefficient for modeling the faceted growth of Si (111) from an undercooled melt</title><author>Fabiyi, Victor A. ; Richmond, Tyler ; Helenbrook, Brian T. ; Paek, Eunsu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-11804ad925a6e0b984f77420c92ff31f26beb64a3c8363121cc8223f804de6293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>A1. Computer simulation</topic><topic>A1. Growth models</topic><topic>A2. Growth from melt</topic><topic>A2. Single crystal growth</topic><topic>B2. Semiconducting silicon</topic><topic>B3. Solar cells</topic><topic>Crystal growth</topic><topic>Crystallites</topic><topic>Growth models</topic><topic>Interface stability</topic><topic>Kinetic coefficients</topic><topic>Modelling</topic><topic>Molecular dynamics</topic><topic>Nucleation</topic><topic>Roughening</topic><topic>Silicon</topic><topic>Single crystals</topic><topic>Solidification</topic><topic>Stability criteria</topic><topic>Supercooling</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fabiyi, Victor A.</creatorcontrib><creatorcontrib>Richmond, Tyler</creatorcontrib><creatorcontrib>Helenbrook, Brian T.</creatorcontrib><creatorcontrib>Paek, Eunsu</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fabiyi, Victor A.</au><au>Richmond, Tyler</au><au>Helenbrook, Brian T.</au><au>Paek, Eunsu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular dynamics determination of Two-dimensional nucleation kinetic coefficient for modeling the faceted growth of Si (111) from an undercooled melt</atitle><jtitle>Journal of crystal growth</jtitle><date>2022-08-15</date><risdate>2022</risdate><volume>592</volume><spage>126736</spage><pages>126736-</pages><artnum>126736</artnum><issn>0022-0248</issn><eissn>1873-5002</eissn><abstract>•Si (111) facet nucleation and growth are investigated from MD simulations.•Mechanisms for the birth and spreading of two-dimensional facets are described.•A nucleation rate-undercooling relationship is proposed.•The MD-derived nucleation model is fitted to a facet growth rate model.•The solidification front is qualitatively compared to that of the HRG process. The discrepancies between kinetic model predictions and experimental observations of two-dimensional (2D) nucleation-mediated growth of silicon limits modeling reliability for existing and new crystal growth processes. Molecular dynamics (MD) simulations were performed to identify the mechanism of evolution of crystallites on a Si (111) facet and semi-quantitatively describe 2D nucleation kinetics using the forced-velocity solidification (FVS) and free-solidification (FS) MD simulations techniques. Both MD models predicted similar nucleation expressions but gave lesser nucleation energy barriers than predicted from Monte Carlo (MC) nucleation model. The estimated nucleation rate from MD was fitted to a polynuclear growth model to estimate a 2D kinetic model and compared to available experimentally reported growth rates. The Si (111) facet velocity model derived from the kinetic coefficient given in this work generally provided more conservative estimates of undercooling and the minimum undercooling that may result in kinetic roughening transition. In addition, the FVS model implemented in this work provided a unique opportunity for qualitatively describing the behavior of a crystal-melt interface and gave a molecular-level perspective on the interface stability criterion for the growth of single-crystal silicon during the horizontal ribbon growth (HRG) process.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2022.126736</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-0248
ispartof Journal of crystal growth, 2022-08, Vol.592, p.126736, Article 126736
issn 0022-0248
1873-5002
language eng
recordid cdi_proquest_journals_2709764265
source Access via ScienceDirect (Elsevier)
subjects A1. Computer simulation
A1. Growth models
A2. Growth from melt
A2. Single crystal growth
B2. Semiconducting silicon
B3. Solar cells
Crystal growth
Crystallites
Growth models
Interface stability
Kinetic coefficients
Modelling
Molecular dynamics
Nucleation
Roughening
Silicon
Single crystals
Solidification
Stability criteria
Supercooling
Two dimensional models
title Molecular dynamics determination of Two-dimensional nucleation kinetic coefficient for modeling the faceted growth of Si (111) from an undercooled melt
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T17%3A57%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20dynamics%20determination%20of%20Two-dimensional%20nucleation%20kinetic%20coefficient%20for%20modeling%20the%20faceted%20growth%20of%20Si%20(111)%20from%20an%20undercooled%20melt&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Fabiyi,%20Victor%20A.&rft.date=2022-08-15&rft.volume=592&rft.spage=126736&rft.pages=126736-&rft.artnum=126736&rft.issn=0022-0248&rft.eissn=1873-5002&rft_id=info:doi/10.1016/j.jcrysgro.2022.126736&rft_dat=%3Cproquest_cross%3E2709764265%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2709764265&rft_id=info:pmid/&rft_els_id=S002202482200224X&rfr_iscdi=true