A high-resolution bi-parametric unconditionally stable ADI method for 2D uniform transmission line equation

We propose a new unconditionally stable ADI approximation of order 2 in time and 4 in space for 2D uniform transmission line equation on an unequal grid. First, we use bi-parameter mesh ratios for unequal mesh and derive a new three-level compact method (implicit) of same accuracy for the general se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational & applied mathematics 2022-10, Vol.41 (7), Article 299
Hauptverfasser: Mohanty, R. K., Ghosh, Bishnu Pada
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title Computational & applied mathematics
container_volume 41
creator Mohanty, R. K.
Ghosh, Bishnu Pada
description We propose a new unconditionally stable ADI approximation of order 2 in time and 4 in space for 2D uniform transmission line equation on an unequal grid. First, we use bi-parameter mesh ratios for unequal mesh and derive a new three-level compact method (implicit) of same accuracy for the general second-order quasilinear hyperbolic partial differential equations. The stability interval for a model test problem has also been studied. For linear difference equations on an unequal mesh, ADI methods are employed. The numerical technique for the solution at first time level is derived briefly. The presented approximation is tested on various benchmark examples using unequal mesh for the confirmation and the utility of the suggested algorithm.
doi_str_mv 10.1007/s40314-022-01991-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2709540406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2709540406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-9a54bd70bc9b33dfca22b08aa46561a756a35aec86fb29b7eeb33d441e194e663</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssTaMH3ktq5ZHpUpsYG2NE6d1SePWThb9exKCxI7VjDTnXo0OIfccHjlA9hQVSK4YCMGAFwVn8oLMeA4ZAwniksyEkDmTKchrchPjHkBmXKkZ-VrQndvuWLDRN33nfEuNY0cMeLBdcCXt29K3lRsv2DRnGjs0jaWL1ZoOxM5XtPaBitUAumE70C5gGw8uxrGrca2l9tTjmL8lVzU20d79zjn5fHn-WL6xzfvrernYsFIAdKzARJkqA1MWRsqqLlEIAzmiSpOUY5akKBO0ZZ7WRhQms3bElOKWF8qmqZyTh6n3GPypt7HTe9-H4f2oRQZFokDBSImJKoOPMdhaH4M7YDhrDnqUqiepepCqf6RqOYTkFIoD3G5t-Kv-J_UNQTZ7fQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2709540406</pqid></control><display><type>article</type><title>A high-resolution bi-parametric unconditionally stable ADI method for 2D uniform transmission line equation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mohanty, R. K. ; Ghosh, Bishnu Pada</creator><creatorcontrib>Mohanty, R. K. ; Ghosh, Bishnu Pada</creatorcontrib><description>We propose a new unconditionally stable ADI approximation of order 2 in time and 4 in space for 2D uniform transmission line equation on an unequal grid. First, we use bi-parameter mesh ratios for unequal mesh and derive a new three-level compact method (implicit) of same accuracy for the general second-order quasilinear hyperbolic partial differential equations. The stability interval for a model test problem has also been studied. For linear difference equations on an unequal mesh, ADI methods are employed. The numerical technique for the solution at first time level is derived briefly. The presented approximation is tested on various benchmark examples using unequal mesh for the confirmation and the utility of the suggested algorithm.</description><identifier>ISSN: 2238-3603</identifier><identifier>EISSN: 1807-0302</identifier><identifier>DOI: 10.1007/s40314-022-01991-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Applications of Mathematics ; Applied physics ; Approximation ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Difference equations ; Finite element method ; Mathematical Applications in Computer Science ; Mathematical Applications in the Physical Sciences ; Mathematics ; Mathematics and Statistics ; Numerical methods ; Partial differential equations ; Transmission lines</subject><ispartof>Computational &amp; applied mathematics, 2022-10, Vol.41 (7), Article 299</ispartof><rights>The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-9a54bd70bc9b33dfca22b08aa46561a756a35aec86fb29b7eeb33d441e194e663</cites><orcidid>0000-0001-6832-1239</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40314-022-01991-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40314-022-01991-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Mohanty, R. K.</creatorcontrib><creatorcontrib>Ghosh, Bishnu Pada</creatorcontrib><title>A high-resolution bi-parametric unconditionally stable ADI method for 2D uniform transmission line equation</title><title>Computational &amp; applied mathematics</title><addtitle>Comp. Appl. Math</addtitle><description>We propose a new unconditionally stable ADI approximation of order 2 in time and 4 in space for 2D uniform transmission line equation on an unequal grid. First, we use bi-parameter mesh ratios for unequal mesh and derive a new three-level compact method (implicit) of same accuracy for the general second-order quasilinear hyperbolic partial differential equations. The stability interval for a model test problem has also been studied. For linear difference equations on an unequal mesh, ADI methods are employed. The numerical technique for the solution at first time level is derived briefly. The presented approximation is tested on various benchmark examples using unequal mesh for the confirmation and the utility of the suggested algorithm.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Applied physics</subject><subject>Approximation</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Difference equations</subject><subject>Finite element method</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical methods</subject><subject>Partial differential equations</subject><subject>Transmission lines</subject><issn>2238-3603</issn><issn>1807-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wssTaMH3ktq5ZHpUpsYG2NE6d1SePWThb9exKCxI7VjDTnXo0OIfccHjlA9hQVSK4YCMGAFwVn8oLMeA4ZAwniksyEkDmTKchrchPjHkBmXKkZ-VrQndvuWLDRN33nfEuNY0cMeLBdcCXt29K3lRsv2DRnGjs0jaWL1ZoOxM5XtPaBitUAumE70C5gGw8uxrGrca2l9tTjmL8lVzU20d79zjn5fHn-WL6xzfvrernYsFIAdKzARJkqA1MWRsqqLlEIAzmiSpOUY5akKBO0ZZ7WRhQms3bElOKWF8qmqZyTh6n3GPypt7HTe9-H4f2oRQZFokDBSImJKoOPMdhaH4M7YDhrDnqUqiepepCqf6RqOYTkFIoD3G5t-Kv-J_UNQTZ7fQ</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Mohanty, R. K.</creator><creator>Ghosh, Bishnu Pada</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6832-1239</orcidid></search><sort><creationdate>20221001</creationdate><title>A high-resolution bi-parametric unconditionally stable ADI method for 2D uniform transmission line equation</title><author>Mohanty, R. K. ; Ghosh, Bishnu Pada</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-9a54bd70bc9b33dfca22b08aa46561a756a35aec86fb29b7eeb33d441e194e663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Applied physics</topic><topic>Approximation</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Difference equations</topic><topic>Finite element method</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical methods</topic><topic>Partial differential equations</topic><topic>Transmission lines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohanty, R. K.</creatorcontrib><creatorcontrib>Ghosh, Bishnu Pada</creatorcontrib><collection>CrossRef</collection><jtitle>Computational &amp; applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohanty, R. K.</au><au>Ghosh, Bishnu Pada</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A high-resolution bi-parametric unconditionally stable ADI method for 2D uniform transmission line equation</atitle><jtitle>Computational &amp; applied mathematics</jtitle><stitle>Comp. Appl. Math</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>41</volume><issue>7</issue><artnum>299</artnum><issn>2238-3603</issn><eissn>1807-0302</eissn><abstract>We propose a new unconditionally stable ADI approximation of order 2 in time and 4 in space for 2D uniform transmission line equation on an unequal grid. First, we use bi-parameter mesh ratios for unequal mesh and derive a new three-level compact method (implicit) of same accuracy for the general second-order quasilinear hyperbolic partial differential equations. The stability interval for a model test problem has also been studied. For linear difference equations on an unequal mesh, ADI methods are employed. The numerical technique for the solution at first time level is derived briefly. The presented approximation is tested on various benchmark examples using unequal mesh for the confirmation and the utility of the suggested algorithm.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40314-022-01991-3</doi><orcidid>https://orcid.org/0000-0001-6832-1239</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2238-3603
ispartof Computational & applied mathematics, 2022-10, Vol.41 (7), Article 299
issn 2238-3603
1807-0302
language eng
recordid cdi_proquest_journals_2709540406
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Applications of Mathematics
Applied physics
Approximation
Computational mathematics
Computational Mathematics and Numerical Analysis
Difference equations
Finite element method
Mathematical Applications in Computer Science
Mathematical Applications in the Physical Sciences
Mathematics
Mathematics and Statistics
Numerical methods
Partial differential equations
Transmission lines
title A high-resolution bi-parametric unconditionally stable ADI method for 2D uniform transmission line equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A17%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20high-resolution%20bi-parametric%20unconditionally%20stable%20ADI%20method%20for%202D%20uniform%20transmission%20line%20equation&rft.jtitle=Computational%20&%20applied%20mathematics&rft.au=Mohanty,%20R.%20K.&rft.date=2022-10-01&rft.volume=41&rft.issue=7&rft.artnum=299&rft.issn=2238-3603&rft.eissn=1807-0302&rft_id=info:doi/10.1007/s40314-022-01991-3&rft_dat=%3Cproquest_cross%3E2709540406%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2709540406&rft_id=info:pmid/&rfr_iscdi=true