Modeling index tracking portfolio based on stochastic dominance for stock selection
We propose a three-step method using the stochastic dominance (SD) approach on stock filtering to determine the number and candidate stocks in a portfolio. We empirically prove that our model can be used to efficiently construct a partial tracking portfolio and replicate the return of the index. Fir...
Gespeichert in:
Veröffentlicht in: | The Engineering economist 2022-07, Vol.67 (3), p.172-194 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 194 |
---|---|
container_issue | 3 |
container_start_page | 172 |
container_title | The Engineering economist |
container_volume | 67 |
creator | Wu, Liangchuan Wang, Yuju Wu, Liang-Hong |
description | We propose a three-step method using the stochastic dominance (SD) approach on stock filtering to determine the number and candidate stocks in a portfolio. We empirically prove that our model can be used to efficiently construct a partial tracking portfolio and replicate the return of the index. First, the low standard deviation feature is found in the proposed portfolio using SD for the risk avoider. Second, our model generates constituents for a portfolio and fills the gap in the index tracking strategy. Third, the portfolios chosen from the SD-based model outperform the FTSE index and traditional index trackers' returns. Artificial intelligence algorithms of weighting constituents can be examined in future research. |
doi_str_mv | 10.1080/0013791X.2022.2047851 |
format | Article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2709321675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2709321675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-da7ca37c14644c0018f84ef756e4c3bf3ee466eb6d2cd8add6f0766aa7daa7f53</originalsourceid><addsrcrecordid>eNp9kMtOAyEUhonRxFp9BBMS16PcBqY7TeMtqXGhJu4I5aK0U6gwjfbtZZwady6AEL7_nMMHwClG5xg16AIhTMUEv54TREjZmGhqvAdGuGaiIgLhfTDqmaqHDsFRzguEECN1PQJPD9HY1oc36IOxX7BLSi_76zqmzsXWRzhX2RoYA8xd1O8qd15DE1c-qKAtdDH9PCxhtq3VnY_hGBw41WZ7sjvH4OXm-nl6V80eb--nV7NKU8K7yiihFRUaM86YLgM2rmHWiZpbpuncUWsZ53bODdGmUcZwhwTnSglTlqvpGJwNddcpfmxs7uQiblIoLWX59YQSzEVP1QOlU8w5WSfXya9U2kqMZO9P_vqTvT-581dycMhZHYPPf6kG8zIxppOCXA6ID0XDSn3G1BrZqW0bk0tFT4nR_7t8A5mzgz0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2709321675</pqid></control><display><type>article</type><title>Modeling index tracking portfolio based on stochastic dominance for stock selection</title><source>EBSCOhost Business Source Complete</source><creator>Wu, Liangchuan ; Wang, Yuju ; Wu, Liang-Hong</creator><creatorcontrib>Wu, Liangchuan ; Wang, Yuju ; Wu, Liang-Hong</creatorcontrib><description>We propose a three-step method using the stochastic dominance (SD) approach on stock filtering to determine the number and candidate stocks in a portfolio. We empirically prove that our model can be used to efficiently construct a partial tracking portfolio and replicate the return of the index. First, the low standard deviation feature is found in the proposed portfolio using SD for the risk avoider. Second, our model generates constituents for a portfolio and fills the gap in the index tracking strategy. Third, the portfolios chosen from the SD-based model outperform the FTSE index and traditional index trackers' returns. Artificial intelligence algorithms of weighting constituents can be examined in future research.</description><identifier>ISSN: 0013-791X</identifier><identifier>EISSN: 1547-2701</identifier><identifier>DOI: 10.1080/0013791X.2022.2047851</identifier><language>eng</language><publisher>Norcross: Taylor & Francis</publisher><subject>Algorithms ; Artificial intelligence ; Constituents ; Tracking</subject><ispartof>The Engineering economist, 2022-07, Vol.67 (3), p.172-194</ispartof><rights>2022 Institute of Industrial & Systems Engineers 2022</rights><rights>2022 Institute of Industrial & Systems Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-da7ca37c14644c0018f84ef756e4c3bf3ee466eb6d2cd8add6f0766aa7daa7f53</citedby><cites>FETCH-LOGICAL-c326t-da7ca37c14644c0018f84ef756e4c3bf3ee466eb6d2cd8add6f0766aa7daa7f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wu, Liangchuan</creatorcontrib><creatorcontrib>Wang, Yuju</creatorcontrib><creatorcontrib>Wu, Liang-Hong</creatorcontrib><title>Modeling index tracking portfolio based on stochastic dominance for stock selection</title><title>The Engineering economist</title><description>We propose a three-step method using the stochastic dominance (SD) approach on stock filtering to determine the number and candidate stocks in a portfolio. We empirically prove that our model can be used to efficiently construct a partial tracking portfolio and replicate the return of the index. First, the low standard deviation feature is found in the proposed portfolio using SD for the risk avoider. Second, our model generates constituents for a portfolio and fills the gap in the index tracking strategy. Third, the portfolios chosen from the SD-based model outperform the FTSE index and traditional index trackers' returns. Artificial intelligence algorithms of weighting constituents can be examined in future research.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Constituents</subject><subject>Tracking</subject><issn>0013-791X</issn><issn>1547-2701</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOAyEUhonRxFp9BBMS16PcBqY7TeMtqXGhJu4I5aK0U6gwjfbtZZwady6AEL7_nMMHwClG5xg16AIhTMUEv54TREjZmGhqvAdGuGaiIgLhfTDqmaqHDsFRzguEECN1PQJPD9HY1oc36IOxX7BLSi_76zqmzsXWRzhX2RoYA8xd1O8qd15DE1c-qKAtdDH9PCxhtq3VnY_hGBw41WZ7sjvH4OXm-nl6V80eb--nV7NKU8K7yiihFRUaM86YLgM2rmHWiZpbpuncUWsZ53bODdGmUcZwhwTnSglTlqvpGJwNddcpfmxs7uQiblIoLWX59YQSzEVP1QOlU8w5WSfXya9U2kqMZO9P_vqTvT-581dycMhZHYPPf6kG8zIxppOCXA6ID0XDSn3G1BrZqW0bk0tFT4nR_7t8A5mzgz0</recordid><startdate>20220703</startdate><enddate>20220703</enddate><creator>Wu, Liangchuan</creator><creator>Wang, Yuju</creator><creator>Wu, Liang-Hong</creator><general>Taylor & Francis</general><general>Taylor & Francis Inc</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20220703</creationdate><title>Modeling index tracking portfolio based on stochastic dominance for stock selection</title><author>Wu, Liangchuan ; Wang, Yuju ; Wu, Liang-Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-da7ca37c14644c0018f84ef756e4c3bf3ee466eb6d2cd8add6f0766aa7daa7f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Constituents</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Liangchuan</creatorcontrib><creatorcontrib>Wang, Yuju</creatorcontrib><creatorcontrib>Wu, Liang-Hong</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>The Engineering economist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Liangchuan</au><au>Wang, Yuju</au><au>Wu, Liang-Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling index tracking portfolio based on stochastic dominance for stock selection</atitle><jtitle>The Engineering economist</jtitle><date>2022-07-03</date><risdate>2022</risdate><volume>67</volume><issue>3</issue><spage>172</spage><epage>194</epage><pages>172-194</pages><issn>0013-791X</issn><eissn>1547-2701</eissn><abstract>We propose a three-step method using the stochastic dominance (SD) approach on stock filtering to determine the number and candidate stocks in a portfolio. We empirically prove that our model can be used to efficiently construct a partial tracking portfolio and replicate the return of the index. First, the low standard deviation feature is found in the proposed portfolio using SD for the risk avoider. Second, our model generates constituents for a portfolio and fills the gap in the index tracking strategy. Third, the portfolios chosen from the SD-based model outperform the FTSE index and traditional index trackers' returns. Artificial intelligence algorithms of weighting constituents can be examined in future research.</abstract><cop>Norcross</cop><pub>Taylor & Francis</pub><doi>10.1080/0013791X.2022.2047851</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-791X |
ispartof | The Engineering economist, 2022-07, Vol.67 (3), p.172-194 |
issn | 0013-791X 1547-2701 |
language | eng |
recordid | cdi_proquest_journals_2709321675 |
source | EBSCOhost Business Source Complete |
subjects | Algorithms Artificial intelligence Constituents Tracking |
title | Modeling index tracking portfolio based on stochastic dominance for stock selection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A19%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20index%20tracking%20portfolio%20based%20on%20stochastic%20dominance%20for%20stock%20selection&rft.jtitle=The%20Engineering%20economist&rft.au=Wu,%20Liangchuan&rft.date=2022-07-03&rft.volume=67&rft.issue=3&rft.spage=172&rft.epage=194&rft.pages=172-194&rft.issn=0013-791X&rft.eissn=1547-2701&rft_id=info:doi/10.1080/0013791X.2022.2047851&rft_dat=%3Cproquest_infor%3E2709321675%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2709321675&rft_id=info:pmid/&rfr_iscdi=true |