Modeling index tracking portfolio based on stochastic dominance for stock selection

We propose a three-step method using the stochastic dominance (SD) approach on stock filtering to determine the number and candidate stocks in a portfolio. We empirically prove that our model can be used to efficiently construct a partial tracking portfolio and replicate the return of the index. Fir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Engineering economist 2022-07, Vol.67 (3), p.172-194
Hauptverfasser: Wu, Liangchuan, Wang, Yuju, Wu, Liang-Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 194
container_issue 3
container_start_page 172
container_title The Engineering economist
container_volume 67
creator Wu, Liangchuan
Wang, Yuju
Wu, Liang-Hong
description We propose a three-step method using the stochastic dominance (SD) approach on stock filtering to determine the number and candidate stocks in a portfolio. We empirically prove that our model can be used to efficiently construct a partial tracking portfolio and replicate the return of the index. First, the low standard deviation feature is found in the proposed portfolio using SD for the risk avoider. Second, our model generates constituents for a portfolio and fills the gap in the index tracking strategy. Third, the portfolios chosen from the SD-based model outperform the FTSE index and traditional index trackers' returns. Artificial intelligence algorithms of weighting constituents can be examined in future research.
doi_str_mv 10.1080/0013791X.2022.2047851
format Article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2709321675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2709321675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-da7ca37c14644c0018f84ef756e4c3bf3ee466eb6d2cd8add6f0766aa7daa7f53</originalsourceid><addsrcrecordid>eNp9kMtOAyEUhonRxFp9BBMS16PcBqY7TeMtqXGhJu4I5aK0U6gwjfbtZZwady6AEL7_nMMHwClG5xg16AIhTMUEv54TREjZmGhqvAdGuGaiIgLhfTDqmaqHDsFRzguEECN1PQJPD9HY1oc36IOxX7BLSi_76zqmzsXWRzhX2RoYA8xd1O8qd15DE1c-qKAtdDH9PCxhtq3VnY_hGBw41WZ7sjvH4OXm-nl6V80eb--nV7NKU8K7yiihFRUaM86YLgM2rmHWiZpbpuncUWsZ53bODdGmUcZwhwTnSglTlqvpGJwNddcpfmxs7uQiblIoLWX59YQSzEVP1QOlU8w5WSfXya9U2kqMZO9P_vqTvT-581dycMhZHYPPf6kG8zIxppOCXA6ID0XDSn3G1BrZqW0bk0tFT4nR_7t8A5mzgz0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2709321675</pqid></control><display><type>article</type><title>Modeling index tracking portfolio based on stochastic dominance for stock selection</title><source>EBSCOhost Business Source Complete</source><creator>Wu, Liangchuan ; Wang, Yuju ; Wu, Liang-Hong</creator><creatorcontrib>Wu, Liangchuan ; Wang, Yuju ; Wu, Liang-Hong</creatorcontrib><description>We propose a three-step method using the stochastic dominance (SD) approach on stock filtering to determine the number and candidate stocks in a portfolio. We empirically prove that our model can be used to efficiently construct a partial tracking portfolio and replicate the return of the index. First, the low standard deviation feature is found in the proposed portfolio using SD for the risk avoider. Second, our model generates constituents for a portfolio and fills the gap in the index tracking strategy. Third, the portfolios chosen from the SD-based model outperform the FTSE index and traditional index trackers' returns. Artificial intelligence algorithms of weighting constituents can be examined in future research.</description><identifier>ISSN: 0013-791X</identifier><identifier>EISSN: 1547-2701</identifier><identifier>DOI: 10.1080/0013791X.2022.2047851</identifier><language>eng</language><publisher>Norcross: Taylor &amp; Francis</publisher><subject>Algorithms ; Artificial intelligence ; Constituents ; Tracking</subject><ispartof>The Engineering economist, 2022-07, Vol.67 (3), p.172-194</ispartof><rights>2022 Institute of Industrial &amp; Systems Engineers 2022</rights><rights>2022 Institute of Industrial &amp; Systems Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-da7ca37c14644c0018f84ef756e4c3bf3ee466eb6d2cd8add6f0766aa7daa7f53</citedby><cites>FETCH-LOGICAL-c326t-da7ca37c14644c0018f84ef756e4c3bf3ee466eb6d2cd8add6f0766aa7daa7f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wu, Liangchuan</creatorcontrib><creatorcontrib>Wang, Yuju</creatorcontrib><creatorcontrib>Wu, Liang-Hong</creatorcontrib><title>Modeling index tracking portfolio based on stochastic dominance for stock selection</title><title>The Engineering economist</title><description>We propose a three-step method using the stochastic dominance (SD) approach on stock filtering to determine the number and candidate stocks in a portfolio. We empirically prove that our model can be used to efficiently construct a partial tracking portfolio and replicate the return of the index. First, the low standard deviation feature is found in the proposed portfolio using SD for the risk avoider. Second, our model generates constituents for a portfolio and fills the gap in the index tracking strategy. Third, the portfolios chosen from the SD-based model outperform the FTSE index and traditional index trackers' returns. Artificial intelligence algorithms of weighting constituents can be examined in future research.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Constituents</subject><subject>Tracking</subject><issn>0013-791X</issn><issn>1547-2701</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOAyEUhonRxFp9BBMS16PcBqY7TeMtqXGhJu4I5aK0U6gwjfbtZZwady6AEL7_nMMHwClG5xg16AIhTMUEv54TREjZmGhqvAdGuGaiIgLhfTDqmaqHDsFRzguEECN1PQJPD9HY1oc36IOxX7BLSi_76zqmzsXWRzhX2RoYA8xd1O8qd15DE1c-qKAtdDH9PCxhtq3VnY_hGBw41WZ7sjvH4OXm-nl6V80eb--nV7NKU8K7yiihFRUaM86YLgM2rmHWiZpbpuncUWsZ53bODdGmUcZwhwTnSglTlqvpGJwNddcpfmxs7uQiblIoLWX59YQSzEVP1QOlU8w5WSfXya9U2kqMZO9P_vqTvT-581dycMhZHYPPf6kG8zIxppOCXA6ID0XDSn3G1BrZqW0bk0tFT4nR_7t8A5mzgz0</recordid><startdate>20220703</startdate><enddate>20220703</enddate><creator>Wu, Liangchuan</creator><creator>Wang, Yuju</creator><creator>Wu, Liang-Hong</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Inc</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20220703</creationdate><title>Modeling index tracking portfolio based on stochastic dominance for stock selection</title><author>Wu, Liangchuan ; Wang, Yuju ; Wu, Liang-Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-da7ca37c14644c0018f84ef756e4c3bf3ee466eb6d2cd8add6f0766aa7daa7f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Constituents</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Liangchuan</creatorcontrib><creatorcontrib>Wang, Yuju</creatorcontrib><creatorcontrib>Wu, Liang-Hong</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>The Engineering economist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Liangchuan</au><au>Wang, Yuju</au><au>Wu, Liang-Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling index tracking portfolio based on stochastic dominance for stock selection</atitle><jtitle>The Engineering economist</jtitle><date>2022-07-03</date><risdate>2022</risdate><volume>67</volume><issue>3</issue><spage>172</spage><epage>194</epage><pages>172-194</pages><issn>0013-791X</issn><eissn>1547-2701</eissn><abstract>We propose a three-step method using the stochastic dominance (SD) approach on stock filtering to determine the number and candidate stocks in a portfolio. We empirically prove that our model can be used to efficiently construct a partial tracking portfolio and replicate the return of the index. First, the low standard deviation feature is found in the proposed portfolio using SD for the risk avoider. Second, our model generates constituents for a portfolio and fills the gap in the index tracking strategy. Third, the portfolios chosen from the SD-based model outperform the FTSE index and traditional index trackers' returns. Artificial intelligence algorithms of weighting constituents can be examined in future research.</abstract><cop>Norcross</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/0013791X.2022.2047851</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-791X
ispartof The Engineering economist, 2022-07, Vol.67 (3), p.172-194
issn 0013-791X
1547-2701
language eng
recordid cdi_proquest_journals_2709321675
source EBSCOhost Business Source Complete
subjects Algorithms
Artificial intelligence
Constituents
Tracking
title Modeling index tracking portfolio based on stochastic dominance for stock selection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A19%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20index%20tracking%20portfolio%20based%20on%20stochastic%20dominance%20for%20stock%20selection&rft.jtitle=The%20Engineering%20economist&rft.au=Wu,%20Liangchuan&rft.date=2022-07-03&rft.volume=67&rft.issue=3&rft.spage=172&rft.epage=194&rft.pages=172-194&rft.issn=0013-791X&rft.eissn=1547-2701&rft_id=info:doi/10.1080/0013791X.2022.2047851&rft_dat=%3Cproquest_infor%3E2709321675%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2709321675&rft_id=info:pmid/&rfr_iscdi=true