Federated Learning with Label Distribution Skew via Logits Calibration

Traditional federated optimization methods perform poorly with heterogeneous data (ie, accuracy reduction), especially for highly skewed data. In this paper, we investigate the label distribution skew in FL, where the distribution of labels varies across clients. First, we investigate the label dist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-09
Hauptverfasser: Zhang, Jie, Li, Zhiqi, Li, Bo, Xu, Jianghe, Wu, Shuang, Ding, Shouhong, Wu, Chao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Zhang, Jie
Li, Zhiqi
Li, Bo
Xu, Jianghe
Wu, Shuang
Ding, Shouhong
Wu, Chao
description Traditional federated optimization methods perform poorly with heterogeneous data (ie, accuracy reduction), especially for highly skewed data. In this paper, we investigate the label distribution skew in FL, where the distribution of labels varies across clients. First, we investigate the label distribution skew from a statistical view. We demonstrate both theoretically and empirically that previous methods based on softmax cross-entropy are not suitable, which can result in local models heavily overfitting to minority classes and missing classes. Additionally, we theoretically introduce a deviation bound to measure the deviation of the gradient after local update. At last, we propose FedLC (\textbf {Fed} erated learning via\textbf {L} ogits\textbf {C} alibration), which calibrates the logits before softmax cross-entropy according to the probability of occurrence of each class. FedLC applies a fine-grained calibrated cross-entropy loss to local update by adding a pairwise label margin. Extensive experiments on federated datasets and real-world datasets demonstrate that FedLC leads to a more accurate global model and much improved performance. Furthermore, integrating other FL methods into our approach can further enhance the performance of the global model.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2709196528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2709196528</sourcerecordid><originalsourceid>FETCH-proquest_journals_27091965283</originalsourceid><addsrcrecordid>eNqNi7sOgjAUQBsTE4nyDzdxJiktzxklDmy6kxKueJG02hb5fRn8AKcznHM2LBBSxlGRCLFjoXMj51xkuUhTGbC6xh6t8thDg8pq0gMs5B_QqA4nOJHzlrrZk9FwfeICH1LQmIG8g0pN1K3v6g5se1eTw_DHPTvW51t1iV7WvGd0vh3NbPWqWpHzMi6zVBTyv-oLp5A7MQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2709196528</pqid></control><display><type>article</type><title>Federated Learning with Label Distribution Skew via Logits Calibration</title><source>Free E- Journals</source><creator>Zhang, Jie ; Li, Zhiqi ; Li, Bo ; Xu, Jianghe ; Wu, Shuang ; Ding, Shouhong ; Wu, Chao</creator><creatorcontrib>Zhang, Jie ; Li, Zhiqi ; Li, Bo ; Xu, Jianghe ; Wu, Shuang ; Ding, Shouhong ; Wu, Chao</creatorcontrib><description>Traditional federated optimization methods perform poorly with heterogeneous data (ie, accuracy reduction), especially for highly skewed data. In this paper, we investigate the label distribution skew in FL, where the distribution of labels varies across clients. First, we investigate the label distribution skew from a statistical view. We demonstrate both theoretically and empirically that previous methods based on softmax cross-entropy are not suitable, which can result in local models heavily overfitting to minority classes and missing classes. Additionally, we theoretically introduce a deviation bound to measure the deviation of the gradient after local update. At last, we propose FedLC (\textbf {Fed} erated learning via\textbf {L} ogits\textbf {C} alibration), which calibrates the logits before softmax cross-entropy according to the probability of occurrence of each class. FedLC applies a fine-grained calibrated cross-entropy loss to local update by adding a pairwise label margin. Extensive experiments on federated datasets and real-world datasets demonstrate that FedLC leads to a more accurate global model and much improved performance. Furthermore, integrating other FL methods into our approach can further enhance the performance of the global model.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Calibration ; Datasets ; Deviation ; Entropy ; Entropy (Information theory) ; Federated learning ; Optimization ; Statistical analysis</subject><ispartof>arXiv.org, 2022-09</ispartof><rights>2022. This work is published under http://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Li, Zhiqi</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Xu, Jianghe</creatorcontrib><creatorcontrib>Wu, Shuang</creatorcontrib><creatorcontrib>Ding, Shouhong</creatorcontrib><creatorcontrib>Wu, Chao</creatorcontrib><title>Federated Learning with Label Distribution Skew via Logits Calibration</title><title>arXiv.org</title><description>Traditional federated optimization methods perform poorly with heterogeneous data (ie, accuracy reduction), especially for highly skewed data. In this paper, we investigate the label distribution skew in FL, where the distribution of labels varies across clients. First, we investigate the label distribution skew from a statistical view. We demonstrate both theoretically and empirically that previous methods based on softmax cross-entropy are not suitable, which can result in local models heavily overfitting to minority classes and missing classes. Additionally, we theoretically introduce a deviation bound to measure the deviation of the gradient after local update. At last, we propose FedLC (\textbf {Fed} erated learning via\textbf {L} ogits\textbf {C} alibration), which calibrates the logits before softmax cross-entropy according to the probability of occurrence of each class. FedLC applies a fine-grained calibrated cross-entropy loss to local update by adding a pairwise label margin. Extensive experiments on federated datasets and real-world datasets demonstrate that FedLC leads to a more accurate global model and much improved performance. Furthermore, integrating other FL methods into our approach can further enhance the performance of the global model.</description><subject>Calibration</subject><subject>Datasets</subject><subject>Deviation</subject><subject>Entropy</subject><subject>Entropy (Information theory)</subject><subject>Federated learning</subject><subject>Optimization</subject><subject>Statistical analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNi7sOgjAUQBsTE4nyDzdxJiktzxklDmy6kxKueJG02hb5fRn8AKcznHM2LBBSxlGRCLFjoXMj51xkuUhTGbC6xh6t8thDg8pq0gMs5B_QqA4nOJHzlrrZk9FwfeICH1LQmIG8g0pN1K3v6g5se1eTw_DHPTvW51t1iV7WvGd0vh3NbPWqWpHzMi6zVBTyv-oLp5A7MQ</recordid><startdate>20220925</startdate><enddate>20220925</enddate><creator>Zhang, Jie</creator><creator>Li, Zhiqi</creator><creator>Li, Bo</creator><creator>Xu, Jianghe</creator><creator>Wu, Shuang</creator><creator>Ding, Shouhong</creator><creator>Wu, Chao</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220925</creationdate><title>Federated Learning with Label Distribution Skew via Logits Calibration</title><author>Zhang, Jie ; Li, Zhiqi ; Li, Bo ; Xu, Jianghe ; Wu, Shuang ; Ding, Shouhong ; Wu, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27091965283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Calibration</topic><topic>Datasets</topic><topic>Deviation</topic><topic>Entropy</topic><topic>Entropy (Information theory)</topic><topic>Federated learning</topic><topic>Optimization</topic><topic>Statistical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Li, Zhiqi</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Xu, Jianghe</creatorcontrib><creatorcontrib>Wu, Shuang</creatorcontrib><creatorcontrib>Ding, Shouhong</creatorcontrib><creatorcontrib>Wu, Chao</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jie</au><au>Li, Zhiqi</au><au>Li, Bo</au><au>Xu, Jianghe</au><au>Wu, Shuang</au><au>Ding, Shouhong</au><au>Wu, Chao</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Federated Learning with Label Distribution Skew via Logits Calibration</atitle><jtitle>arXiv.org</jtitle><date>2022-09-25</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Traditional federated optimization methods perform poorly with heterogeneous data (ie, accuracy reduction), especially for highly skewed data. In this paper, we investigate the label distribution skew in FL, where the distribution of labels varies across clients. First, we investigate the label distribution skew from a statistical view. We demonstrate both theoretically and empirically that previous methods based on softmax cross-entropy are not suitable, which can result in local models heavily overfitting to minority classes and missing classes. Additionally, we theoretically introduce a deviation bound to measure the deviation of the gradient after local update. At last, we propose FedLC (\textbf {Fed} erated learning via\textbf {L} ogits\textbf {C} alibration), which calibrates the logits before softmax cross-entropy according to the probability of occurrence of each class. FedLC applies a fine-grained calibrated cross-entropy loss to local update by adding a pairwise label margin. Extensive experiments on federated datasets and real-world datasets demonstrate that FedLC leads to a more accurate global model and much improved performance. Furthermore, integrating other FL methods into our approach can further enhance the performance of the global model.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2709196528
source Free E- Journals
subjects Calibration
Datasets
Deviation
Entropy
Entropy (Information theory)
Federated learning
Optimization
Statistical analysis
title Federated Learning with Label Distribution Skew via Logits Calibration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T14%3A42%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Federated%20Learning%20with%20Label%20Distribution%20Skew%20via%20Logits%20Calibration&rft.jtitle=arXiv.org&rft.au=Zhang,%20Jie&rft.date=2022-09-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2709196528%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2709196528&rft_id=info:pmid/&rfr_iscdi=true