Interactive Visual Exploration of Longitudinal Historical Career Mobility Data

The increased availability of quantitative historical datasets has provided new research opportunities for multiple disciplines in social science. In this article, we work closely with the constructors of a new dataset, CGED-Q (China Government Employee Database-Qing), that records the career trajec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics 2022-10, Vol.28 (10), p.3441-3455
Hauptverfasser: Wang, Yifang, Liang, Hongye, Shu, Xinhuan, Wang, Jiachen, Xu, Ke, Deng, Zikun, Campbell, Cameron, Chen, Bijia, Wu, Yingcai, Qu, Huamin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3455
container_issue 10
container_start_page 3441
container_title IEEE transactions on visualization and computer graphics
container_volume 28
creator Wang, Yifang
Liang, Hongye
Shu, Xinhuan
Wang, Jiachen
Xu, Ke
Deng, Zikun
Campbell, Cameron
Chen, Bijia
Wu, Yingcai
Qu, Huamin
description The increased availability of quantitative historical datasets has provided new research opportunities for multiple disciplines in social science. In this article, we work closely with the constructors of a new dataset, CGED-Q (China Government Employee Database-Qing), that records the career trajectories of over 340,000 government officials in the Qing bureaucracy in China from 1760 to 1912. We use these data to study career mobility from a historical perspective and understand social mobility and inequality. However, existing statistical approaches are inadequate for analyzing career mobility in this historical dataset with its fine-grained attributes and long time span, since they are mostly hypothesis-driven and require substantial effort. We propose CareerLens , an interactive visual analytics system for assisting experts in exploring, understanding, and reasoning from historical career data. With CareerLens , experts examine mobility patterns in three levels-of-detail, namely, the macro-level providing a summary of overall mobility, the meso-level extracting latent group mobility patterns, and the micro-level revealing social relationships of individuals. We demonstrate the effectiveness and usability of CareerLens through two case studies and receive encouraging feedback from follow-up interviews with domain experts.
doi_str_mv 10.1109/TVCG.2021.3067200
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2709156474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9382844</ieee_id><sourcerecordid>2504353331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-55195068d05f3891d2a31b69e0b5f67191eca6539ef745caa9fd884f3b60d1103</originalsourceid><addsrcrecordid>eNpdkE1LxDAQhoMofv8AEaTgxUvXmXy1Ocr6Cate1GtJ21Qi3WZNUnH_vVl29eBpBuaZYd6HkBOECSKoy5e36d2EAsUJA1lQgC2yj4pjDgLkduqhKHIqqdwjByF8ACDnpdole4wViVC4T54ehmi8bqL9MtmbDaPus5vvRe-8jtYNmeuymRvebRxbO6TZvQ3Redukdqq9MT57dLXtbVxm1zrqI7LT6T6Y4009JK-3Ny_T-3z2fPcwvZrlDVM05kKgSg-ULYiOlQpbqhnWUhmoRScLVGgaLQVTpiu4aLRWXVuWvGO1hDZFZ4fkYn134d3naEKs5jY0pu_1YNwYKiqAM8EYw4Se_0M_3OhTlkQVoFBIXvBE4ZpqvAvBm65aeDvXflkhVCvZ1Up2tZJdbWSnnbPN5bGem_Zv49duAk7XgDXG_I0VK2nJOfsBMcqBmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2709156474</pqid></control><display><type>article</type><title>Interactive Visual Exploration of Longitudinal Historical Career Mobility Data</title><source>IEEE Explore</source><creator>Wang, Yifang ; Liang, Hongye ; Shu, Xinhuan ; Wang, Jiachen ; Xu, Ke ; Deng, Zikun ; Campbell, Cameron ; Chen, Bijia ; Wu, Yingcai ; Qu, Huamin</creator><creatorcontrib>Wang, Yifang ; Liang, Hongye ; Shu, Xinhuan ; Wang, Jiachen ; Xu, Ke ; Deng, Zikun ; Campbell, Cameron ; Chen, Bijia ; Wu, Yingcai ; Qu, Huamin</creatorcontrib><description>The increased availability of quantitative historical datasets has provided new research opportunities for multiple disciplines in social science. In this article, we work closely with the constructors of a new dataset, CGED-Q (China Government Employee Database-Qing), that records the career trajectories of over 340,000 government officials in the Qing bureaucracy in China from 1760 to 1912. We use these data to study career mobility from a historical perspective and understand social mobility and inequality. However, existing statistical approaches are inadequate for analyzing career mobility in this historical dataset with its fine-grained attributes and long time span, since they are mostly hypothesis-driven and require substantial effort. We propose CareerLens , an interactive visual analytics system for assisting experts in exploring, understanding, and reasoning from historical career data. With CareerLens , experts examine mobility patterns in three levels-of-detail, namely, the macro-level providing a summary of overall mobility, the meso-level extracting latent group mobility patterns, and the micro-level revealing social relationships of individuals. We demonstrate the effectiveness and usability of CareerLens through two case studies and receive encouraging feedback from follow-up interviews with domain experts.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2021.3067200</identifier><identifier>PMID: 33750691</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>career mobility ; Careers ; Data visualization ; Datasets ; Digital humanities ; Engineering profession ; Government ; History ; Interactive systems ; quantitative history ; Social groups ; Trajectory ; Visual analytics</subject><ispartof>IEEE transactions on visualization and computer graphics, 2022-10, Vol.28 (10), p.3441-3455</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-55195068d05f3891d2a31b69e0b5f67191eca6539ef745caa9fd884f3b60d1103</citedby><cites>FETCH-LOGICAL-c392t-55195068d05f3891d2a31b69e0b5f67191eca6539ef745caa9fd884f3b60d1103</cites><orcidid>0000-0001-6267-9440 ; 0000-0001-9630-9958 ; 0000-0002-4477-5292 ; 0000-0002-1119-3237 ; 0000-0002-9332-4172 ; 0000-0001-6277-1941 ; 0000-0002-9736-4454</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9382844$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33750691$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yifang</creatorcontrib><creatorcontrib>Liang, Hongye</creatorcontrib><creatorcontrib>Shu, Xinhuan</creatorcontrib><creatorcontrib>Wang, Jiachen</creatorcontrib><creatorcontrib>Xu, Ke</creatorcontrib><creatorcontrib>Deng, Zikun</creatorcontrib><creatorcontrib>Campbell, Cameron</creatorcontrib><creatorcontrib>Chen, Bijia</creatorcontrib><creatorcontrib>Wu, Yingcai</creatorcontrib><creatorcontrib>Qu, Huamin</creatorcontrib><title>Interactive Visual Exploration of Longitudinal Historical Career Mobility Data</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>The increased availability of quantitative historical datasets has provided new research opportunities for multiple disciplines in social science. In this article, we work closely with the constructors of a new dataset, CGED-Q (China Government Employee Database-Qing), that records the career trajectories of over 340,000 government officials in the Qing bureaucracy in China from 1760 to 1912. We use these data to study career mobility from a historical perspective and understand social mobility and inequality. However, existing statistical approaches are inadequate for analyzing career mobility in this historical dataset with its fine-grained attributes and long time span, since they are mostly hypothesis-driven and require substantial effort. We propose CareerLens , an interactive visual analytics system for assisting experts in exploring, understanding, and reasoning from historical career data. With CareerLens , experts examine mobility patterns in three levels-of-detail, namely, the macro-level providing a summary of overall mobility, the meso-level extracting latent group mobility patterns, and the micro-level revealing social relationships of individuals. We demonstrate the effectiveness and usability of CareerLens through two case studies and receive encouraging feedback from follow-up interviews with domain experts.</description><subject>career mobility</subject><subject>Careers</subject><subject>Data visualization</subject><subject>Datasets</subject><subject>Digital humanities</subject><subject>Engineering profession</subject><subject>Government</subject><subject>History</subject><subject>Interactive systems</subject><subject>quantitative history</subject><subject>Social groups</subject><subject>Trajectory</subject><subject>Visual analytics</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpdkE1LxDAQhoMofv8AEaTgxUvXmXy1Ocr6Cate1GtJ21Qi3WZNUnH_vVl29eBpBuaZYd6HkBOECSKoy5e36d2EAsUJA1lQgC2yj4pjDgLkduqhKHIqqdwjByF8ACDnpdole4wViVC4T54ehmi8bqL9MtmbDaPus5vvRe-8jtYNmeuymRvebRxbO6TZvQ3Redukdqq9MT57dLXtbVxm1zrqI7LT6T6Y4009JK-3Ny_T-3z2fPcwvZrlDVM05kKgSg-ULYiOlQpbqhnWUhmoRScLVGgaLQVTpiu4aLRWXVuWvGO1hDZFZ4fkYn134d3naEKs5jY0pu_1YNwYKiqAM8EYw4Se_0M_3OhTlkQVoFBIXvBE4ZpqvAvBm65aeDvXflkhVCvZ1Up2tZJdbWSnnbPN5bGem_Zv49duAk7XgDXG_I0VK2nJOfsBMcqBmw</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Wang, Yifang</creator><creator>Liang, Hongye</creator><creator>Shu, Xinhuan</creator><creator>Wang, Jiachen</creator><creator>Xu, Ke</creator><creator>Deng, Zikun</creator><creator>Campbell, Cameron</creator><creator>Chen, Bijia</creator><creator>Wu, Yingcai</creator><creator>Qu, Huamin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6267-9440</orcidid><orcidid>https://orcid.org/0000-0001-9630-9958</orcidid><orcidid>https://orcid.org/0000-0002-4477-5292</orcidid><orcidid>https://orcid.org/0000-0002-1119-3237</orcidid><orcidid>https://orcid.org/0000-0002-9332-4172</orcidid><orcidid>https://orcid.org/0000-0001-6277-1941</orcidid><orcidid>https://orcid.org/0000-0002-9736-4454</orcidid></search><sort><creationdate>20221001</creationdate><title>Interactive Visual Exploration of Longitudinal Historical Career Mobility Data</title><author>Wang, Yifang ; Liang, Hongye ; Shu, Xinhuan ; Wang, Jiachen ; Xu, Ke ; Deng, Zikun ; Campbell, Cameron ; Chen, Bijia ; Wu, Yingcai ; Qu, Huamin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-55195068d05f3891d2a31b69e0b5f67191eca6539ef745caa9fd884f3b60d1103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>career mobility</topic><topic>Careers</topic><topic>Data visualization</topic><topic>Datasets</topic><topic>Digital humanities</topic><topic>Engineering profession</topic><topic>Government</topic><topic>History</topic><topic>Interactive systems</topic><topic>quantitative history</topic><topic>Social groups</topic><topic>Trajectory</topic><topic>Visual analytics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yifang</creatorcontrib><creatorcontrib>Liang, Hongye</creatorcontrib><creatorcontrib>Shu, Xinhuan</creatorcontrib><creatorcontrib>Wang, Jiachen</creatorcontrib><creatorcontrib>Xu, Ke</creatorcontrib><creatorcontrib>Deng, Zikun</creatorcontrib><creatorcontrib>Campbell, Cameron</creatorcontrib><creatorcontrib>Chen, Bijia</creatorcontrib><creatorcontrib>Wu, Yingcai</creatorcontrib><creatorcontrib>Qu, Huamin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Explore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yifang</au><au>Liang, Hongye</au><au>Shu, Xinhuan</au><au>Wang, Jiachen</au><au>Xu, Ke</au><au>Deng, Zikun</au><au>Campbell, Cameron</au><au>Chen, Bijia</au><au>Wu, Yingcai</au><au>Qu, Huamin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interactive Visual Exploration of Longitudinal Historical Career Mobility Data</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2022-10-01</date><risdate>2022</risdate><volume>28</volume><issue>10</issue><spage>3441</spage><epage>3455</epage><pages>3441-3455</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>The increased availability of quantitative historical datasets has provided new research opportunities for multiple disciplines in social science. In this article, we work closely with the constructors of a new dataset, CGED-Q (China Government Employee Database-Qing), that records the career trajectories of over 340,000 government officials in the Qing bureaucracy in China from 1760 to 1912. We use these data to study career mobility from a historical perspective and understand social mobility and inequality. However, existing statistical approaches are inadequate for analyzing career mobility in this historical dataset with its fine-grained attributes and long time span, since they are mostly hypothesis-driven and require substantial effort. We propose CareerLens , an interactive visual analytics system for assisting experts in exploring, understanding, and reasoning from historical career data. With CareerLens , experts examine mobility patterns in three levels-of-detail, namely, the macro-level providing a summary of overall mobility, the meso-level extracting latent group mobility patterns, and the micro-level revealing social relationships of individuals. We demonstrate the effectiveness and usability of CareerLens through two case studies and receive encouraging feedback from follow-up interviews with domain experts.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33750691</pmid><doi>10.1109/TVCG.2021.3067200</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6267-9440</orcidid><orcidid>https://orcid.org/0000-0001-9630-9958</orcidid><orcidid>https://orcid.org/0000-0002-4477-5292</orcidid><orcidid>https://orcid.org/0000-0002-1119-3237</orcidid><orcidid>https://orcid.org/0000-0002-9332-4172</orcidid><orcidid>https://orcid.org/0000-0001-6277-1941</orcidid><orcidid>https://orcid.org/0000-0002-9736-4454</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2022-10, Vol.28 (10), p.3441-3455
issn 1077-2626
1941-0506
language eng
recordid cdi_proquest_journals_2709156474
source IEEE Explore
subjects career mobility
Careers
Data visualization
Datasets
Digital humanities
Engineering profession
Government
History
Interactive systems
quantitative history
Social groups
Trajectory
Visual analytics
title Interactive Visual Exploration of Longitudinal Historical Career Mobility Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A39%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interactive%20Visual%20Exploration%20of%20Longitudinal%20Historical%20Career%20Mobility%20Data&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Wang,%20Yifang&rft.date=2022-10-01&rft.volume=28&rft.issue=10&rft.spage=3441&rft.epage=3455&rft.pages=3441-3455&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2021.3067200&rft_dat=%3Cproquest_ieee_%3E2504353331%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2709156474&rft_id=info:pmid/33750691&rft_ieee_id=9382844&rfr_iscdi=true