Constructing a Memory Kernel of the Returning Probability to Efficiently Describe Molecular Binding Processes
Returning probability theory enables us to systematically analyze host-guest binding kinetics in terms of the thermodynamic and kinetic properties of the intermediate state existing in the binding processes with the molecular dynamics (MD) simulation. In order to employ this theory, we need to compu...
Gespeichert in:
Veröffentlicht in: | Chemistry letters 2022-08, Vol.51 (8), p.823-827 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 827 |
---|---|
container_issue | 8 |
container_start_page | 823 |
container_title | Chemistry letters |
container_volume | 51 |
creator | Kasahara, Kento Masayama, Ren Matsubara, Yuya Matubayasi, Nobuyuki |
description | Returning probability theory enables us to systematically analyze host-guest binding kinetics in terms of the thermodynamic and kinetic properties of the intermediate state existing in the binding processes with the molecular dynamics (MD) simulation. In order to employ this theory, we need to compute the returning probability, a time-correlation function for describing the kinetics of the intermediate state. Here, we present a methodology to realize the efficient calculation of the probability with the memory kernel construction. |
doi_str_mv | 10.1246/cl.220236 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2709091740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2709091740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-9b852a949b163e70c9309bf1ef4555389dc26ec1fb2aae990bb7f99986a184ce3</originalsourceid><addsrcrecordid>eNplkLtOAzEQRS0EEiFQ8AeWqCg2jO19uYQQHiIRCEG9sp0xcbRZB9sp9u9ZlEgUVNOce0b3EnLJYMJ4Xt6YdsI5cFEekRETeZ1BxYpjMgJRllkFnJ-SsxjXAFBLwUdkM_VdTGFnkuu-qKIL3PjQ0xcMHbbUW5pWSN8x7UL3C7wFr5V2rUs9TZ7OrHXGYZfant5jNMFppAvfotm1KtA71y0PKYMxYjwnJ1a1ES8Od0w-H2Yf06ds_vr4PL2dZ0YApEzquuBK5lKzUmAFRgqQ2jK0eVEUopZLw0s0zGquFEoJWldWSlmXitW5QTEmV3vvNvjvHcbUrP3QYHjZ8AokSFblMFDXe8oEH2NA22yD26jQNwya3zUb0zb7NQe2PLAr3DgzmPxQPPVrtVXdn_1_8AfQ23sW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2709091740</pqid></control><display><type>article</type><title>Constructing a Memory Kernel of the Returning Probability to Efficiently Describe Molecular Binding Processes</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Kasahara, Kento ; Masayama, Ren ; Matsubara, Yuya ; Matubayasi, Nobuyuki</creator><creatorcontrib>Kasahara, Kento ; Masayama, Ren ; Matsubara, Yuya ; Matubayasi, Nobuyuki</creatorcontrib><description>Returning probability theory enables us to systematically analyze host-guest binding kinetics in terms of the thermodynamic and kinetic properties of the intermediate state existing in the binding processes with the molecular dynamics (MD) simulation. In order to employ this theory, we need to compute the returning probability, a time-correlation function for describing the kinetics of the intermediate state. Here, we present a methodology to realize the efficient calculation of the probability with the memory kernel construction.</description><identifier>ISSN: 0366-7022</identifier><identifier>EISSN: 1348-0715</identifier><identifier>DOI: 10.1246/cl.220236</identifier><language>eng</language><publisher>Tokyo: The Chemical Society of Japan</publisher><subject>Binding ; Kinetics ; Molecular dynamics ; Probability theory ; Time correlation functions</subject><ispartof>Chemistry letters, 2022-08, Vol.51 (8), p.823-827</ispartof><rights>The Chemical Society of Japan</rights><rights>Copyright Chemical Society of Japan 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-9b852a949b163e70c9309bf1ef4555389dc26ec1fb2aae990bb7f99986a184ce3</citedby><cites>FETCH-LOGICAL-c300t-9b852a949b163e70c9309bf1ef4555389dc26ec1fb2aae990bb7f99986a184ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Kasahara, Kento</creatorcontrib><creatorcontrib>Masayama, Ren</creatorcontrib><creatorcontrib>Matsubara, Yuya</creatorcontrib><creatorcontrib>Matubayasi, Nobuyuki</creatorcontrib><title>Constructing a Memory Kernel of the Returning Probability to Efficiently Describe Molecular Binding Processes</title><title>Chemistry letters</title><description>Returning probability theory enables us to systematically analyze host-guest binding kinetics in terms of the thermodynamic and kinetic properties of the intermediate state existing in the binding processes with the molecular dynamics (MD) simulation. In order to employ this theory, we need to compute the returning probability, a time-correlation function for describing the kinetics of the intermediate state. Here, we present a methodology to realize the efficient calculation of the probability with the memory kernel construction.</description><subject>Binding</subject><subject>Kinetics</subject><subject>Molecular dynamics</subject><subject>Probability theory</subject><subject>Time correlation functions</subject><issn>0366-7022</issn><issn>1348-0715</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNplkLtOAzEQRS0EEiFQ8AeWqCg2jO19uYQQHiIRCEG9sp0xcbRZB9sp9u9ZlEgUVNOce0b3EnLJYMJ4Xt6YdsI5cFEekRETeZ1BxYpjMgJRllkFnJ-SsxjXAFBLwUdkM_VdTGFnkuu-qKIL3PjQ0xcMHbbUW5pWSN8x7UL3C7wFr5V2rUs9TZ7OrHXGYZfant5jNMFppAvfotm1KtA71y0PKYMxYjwnJ1a1ES8Od0w-H2Yf06ds_vr4PL2dZ0YApEzquuBK5lKzUmAFRgqQ2jK0eVEUopZLw0s0zGquFEoJWldWSlmXitW5QTEmV3vvNvjvHcbUrP3QYHjZ8AokSFblMFDXe8oEH2NA22yD26jQNwya3zUb0zb7NQe2PLAr3DgzmPxQPPVrtVXdn_1_8AfQ23sW</recordid><startdate>20220805</startdate><enddate>20220805</enddate><creator>Kasahara, Kento</creator><creator>Masayama, Ren</creator><creator>Matsubara, Yuya</creator><creator>Matubayasi, Nobuyuki</creator><general>The Chemical Society of Japan</general><general>Chemical Society of Japan</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20220805</creationdate><title>Constructing a Memory Kernel of the Returning Probability to Efficiently Describe Molecular Binding Processes</title><author>Kasahara, Kento ; Masayama, Ren ; Matsubara, Yuya ; Matubayasi, Nobuyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-9b852a949b163e70c9309bf1ef4555389dc26ec1fb2aae990bb7f99986a184ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Binding</topic><topic>Kinetics</topic><topic>Molecular dynamics</topic><topic>Probability theory</topic><topic>Time correlation functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kasahara, Kento</creatorcontrib><creatorcontrib>Masayama, Ren</creatorcontrib><creatorcontrib>Matsubara, Yuya</creatorcontrib><creatorcontrib>Matubayasi, Nobuyuki</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kasahara, Kento</au><au>Masayama, Ren</au><au>Matsubara, Yuya</au><au>Matubayasi, Nobuyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constructing a Memory Kernel of the Returning Probability to Efficiently Describe Molecular Binding Processes</atitle><jtitle>Chemistry letters</jtitle><date>2022-08-05</date><risdate>2022</risdate><volume>51</volume><issue>8</issue><spage>823</spage><epage>827</epage><pages>823-827</pages><issn>0366-7022</issn><eissn>1348-0715</eissn><abstract>Returning probability theory enables us to systematically analyze host-guest binding kinetics in terms of the thermodynamic and kinetic properties of the intermediate state existing in the binding processes with the molecular dynamics (MD) simulation. In order to employ this theory, we need to compute the returning probability, a time-correlation function for describing the kinetics of the intermediate state. Here, we present a methodology to realize the efficient calculation of the probability with the memory kernel construction.</abstract><cop>Tokyo</cop><pub>The Chemical Society of Japan</pub><doi>10.1246/cl.220236</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0366-7022 |
ispartof | Chemistry letters, 2022-08, Vol.51 (8), p.823-827 |
issn | 0366-7022 1348-0715 |
language | eng |
recordid | cdi_proquest_journals_2709091740 |
source | Oxford University Press Journals All Titles (1996-Current) |
subjects | Binding Kinetics Molecular dynamics Probability theory Time correlation functions |
title | Constructing a Memory Kernel of the Returning Probability to Efficiently Describe Molecular Binding Processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T07%3A32%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constructing%20a%20Memory%20Kernel%20of%20the%20Returning%20Probability%20to%20Efficiently%20Describe%20Molecular%20Binding%20Processes&rft.jtitle=Chemistry%20letters&rft.au=Kasahara,%20Kento&rft.date=2022-08-05&rft.volume=51&rft.issue=8&rft.spage=823&rft.epage=827&rft.pages=823-827&rft.issn=0366-7022&rft.eissn=1348-0715&rft_id=info:doi/10.1246/cl.220236&rft_dat=%3Cproquest_cross%3E2709091740%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2709091740&rft_id=info:pmid/&rfr_iscdi=true |