Constructing a Memory Kernel of the Returning Probability to Efficiently Describe Molecular Binding Processes

Returning probability theory enables us to systematically analyze host-guest binding kinetics in terms of the thermodynamic and kinetic properties of the intermediate state existing in the binding processes with the molecular dynamics (MD) simulation. In order to employ this theory, we need to compu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry letters 2022-08, Vol.51 (8), p.823-827
Hauptverfasser: Kasahara, Kento, Masayama, Ren, Matsubara, Yuya, Matubayasi, Nobuyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 827
container_issue 8
container_start_page 823
container_title Chemistry letters
container_volume 51
creator Kasahara, Kento
Masayama, Ren
Matsubara, Yuya
Matubayasi, Nobuyuki
description Returning probability theory enables us to systematically analyze host-guest binding kinetics in terms of the thermodynamic and kinetic properties of the intermediate state existing in the binding processes with the molecular dynamics (MD) simulation. In order to employ this theory, we need to compute the returning probability, a time-correlation function for describing the kinetics of the intermediate state. Here, we present a methodology to realize the efficient calculation of the probability with the memory kernel construction.
doi_str_mv 10.1246/cl.220236
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2709091740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2709091740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-9b852a949b163e70c9309bf1ef4555389dc26ec1fb2aae990bb7f99986a184ce3</originalsourceid><addsrcrecordid>eNplkLtOAzEQRS0EEiFQ8AeWqCg2jO19uYQQHiIRCEG9sp0xcbRZB9sp9u9ZlEgUVNOce0b3EnLJYMJ4Xt6YdsI5cFEekRETeZ1BxYpjMgJRllkFnJ-SsxjXAFBLwUdkM_VdTGFnkuu-qKIL3PjQ0xcMHbbUW5pWSN8x7UL3C7wFr5V2rUs9TZ7OrHXGYZfant5jNMFppAvfotm1KtA71y0PKYMxYjwnJ1a1ES8Od0w-H2Yf06ds_vr4PL2dZ0YApEzquuBK5lKzUmAFRgqQ2jK0eVEUopZLw0s0zGquFEoJWldWSlmXitW5QTEmV3vvNvjvHcbUrP3QYHjZ8AokSFblMFDXe8oEH2NA22yD26jQNwya3zUb0zb7NQe2PLAr3DgzmPxQPPVrtVXdn_1_8AfQ23sW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2709091740</pqid></control><display><type>article</type><title>Constructing a Memory Kernel of the Returning Probability to Efficiently Describe Molecular Binding Processes</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Kasahara, Kento ; Masayama, Ren ; Matsubara, Yuya ; Matubayasi, Nobuyuki</creator><creatorcontrib>Kasahara, Kento ; Masayama, Ren ; Matsubara, Yuya ; Matubayasi, Nobuyuki</creatorcontrib><description>Returning probability theory enables us to systematically analyze host-guest binding kinetics in terms of the thermodynamic and kinetic properties of the intermediate state existing in the binding processes with the molecular dynamics (MD) simulation. In order to employ this theory, we need to compute the returning probability, a time-correlation function for describing the kinetics of the intermediate state. Here, we present a methodology to realize the efficient calculation of the probability with the memory kernel construction.</description><identifier>ISSN: 0366-7022</identifier><identifier>EISSN: 1348-0715</identifier><identifier>DOI: 10.1246/cl.220236</identifier><language>eng</language><publisher>Tokyo: The Chemical Society of Japan</publisher><subject>Binding ; Kinetics ; Molecular dynamics ; Probability theory ; Time correlation functions</subject><ispartof>Chemistry letters, 2022-08, Vol.51 (8), p.823-827</ispartof><rights>The Chemical Society of Japan</rights><rights>Copyright Chemical Society of Japan 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-9b852a949b163e70c9309bf1ef4555389dc26ec1fb2aae990bb7f99986a184ce3</citedby><cites>FETCH-LOGICAL-c300t-9b852a949b163e70c9309bf1ef4555389dc26ec1fb2aae990bb7f99986a184ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Kasahara, Kento</creatorcontrib><creatorcontrib>Masayama, Ren</creatorcontrib><creatorcontrib>Matsubara, Yuya</creatorcontrib><creatorcontrib>Matubayasi, Nobuyuki</creatorcontrib><title>Constructing a Memory Kernel of the Returning Probability to Efficiently Describe Molecular Binding Processes</title><title>Chemistry letters</title><description>Returning probability theory enables us to systematically analyze host-guest binding kinetics in terms of the thermodynamic and kinetic properties of the intermediate state existing in the binding processes with the molecular dynamics (MD) simulation. In order to employ this theory, we need to compute the returning probability, a time-correlation function for describing the kinetics of the intermediate state. Here, we present a methodology to realize the efficient calculation of the probability with the memory kernel construction.</description><subject>Binding</subject><subject>Kinetics</subject><subject>Molecular dynamics</subject><subject>Probability theory</subject><subject>Time correlation functions</subject><issn>0366-7022</issn><issn>1348-0715</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNplkLtOAzEQRS0EEiFQ8AeWqCg2jO19uYQQHiIRCEG9sp0xcbRZB9sp9u9ZlEgUVNOce0b3EnLJYMJ4Xt6YdsI5cFEekRETeZ1BxYpjMgJRllkFnJ-SsxjXAFBLwUdkM_VdTGFnkuu-qKIL3PjQ0xcMHbbUW5pWSN8x7UL3C7wFr5V2rUs9TZ7OrHXGYZfant5jNMFppAvfotm1KtA71y0PKYMxYjwnJ1a1ES8Od0w-H2Yf06ds_vr4PL2dZ0YApEzquuBK5lKzUmAFRgqQ2jK0eVEUopZLw0s0zGquFEoJWldWSlmXitW5QTEmV3vvNvjvHcbUrP3QYHjZ8AokSFblMFDXe8oEH2NA22yD26jQNwya3zUb0zb7NQe2PLAr3DgzmPxQPPVrtVXdn_1_8AfQ23sW</recordid><startdate>20220805</startdate><enddate>20220805</enddate><creator>Kasahara, Kento</creator><creator>Masayama, Ren</creator><creator>Matsubara, Yuya</creator><creator>Matubayasi, Nobuyuki</creator><general>The Chemical Society of Japan</general><general>Chemical Society of Japan</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20220805</creationdate><title>Constructing a Memory Kernel of the Returning Probability to Efficiently Describe Molecular Binding Processes</title><author>Kasahara, Kento ; Masayama, Ren ; Matsubara, Yuya ; Matubayasi, Nobuyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-9b852a949b163e70c9309bf1ef4555389dc26ec1fb2aae990bb7f99986a184ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Binding</topic><topic>Kinetics</topic><topic>Molecular dynamics</topic><topic>Probability theory</topic><topic>Time correlation functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kasahara, Kento</creatorcontrib><creatorcontrib>Masayama, Ren</creatorcontrib><creatorcontrib>Matsubara, Yuya</creatorcontrib><creatorcontrib>Matubayasi, Nobuyuki</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kasahara, Kento</au><au>Masayama, Ren</au><au>Matsubara, Yuya</au><au>Matubayasi, Nobuyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constructing a Memory Kernel of the Returning Probability to Efficiently Describe Molecular Binding Processes</atitle><jtitle>Chemistry letters</jtitle><date>2022-08-05</date><risdate>2022</risdate><volume>51</volume><issue>8</issue><spage>823</spage><epage>827</epage><pages>823-827</pages><issn>0366-7022</issn><eissn>1348-0715</eissn><abstract>Returning probability theory enables us to systematically analyze host-guest binding kinetics in terms of the thermodynamic and kinetic properties of the intermediate state existing in the binding processes with the molecular dynamics (MD) simulation. In order to employ this theory, we need to compute the returning probability, a time-correlation function for describing the kinetics of the intermediate state. Here, we present a methodology to realize the efficient calculation of the probability with the memory kernel construction.</abstract><cop>Tokyo</cop><pub>The Chemical Society of Japan</pub><doi>10.1246/cl.220236</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0366-7022
ispartof Chemistry letters, 2022-08, Vol.51 (8), p.823-827
issn 0366-7022
1348-0715
language eng
recordid cdi_proquest_journals_2709091740
source Oxford University Press Journals All Titles (1996-Current)
subjects Binding
Kinetics
Molecular dynamics
Probability theory
Time correlation functions
title Constructing a Memory Kernel of the Returning Probability to Efficiently Describe Molecular Binding Processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T07%3A32%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constructing%20a%20Memory%20Kernel%20of%20the%20Returning%20Probability%20to%20Efficiently%20Describe%20Molecular%20Binding%20Processes&rft.jtitle=Chemistry%20letters&rft.au=Kasahara,%20Kento&rft.date=2022-08-05&rft.volume=51&rft.issue=8&rft.spage=823&rft.epage=827&rft.pages=823-827&rft.issn=0366-7022&rft.eissn=1348-0715&rft_id=info:doi/10.1246/cl.220236&rft_dat=%3Cproquest_cross%3E2709091740%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2709091740&rft_id=info:pmid/&rfr_iscdi=true