Dispersion on Intervals

Given a set of n disjoint intervals on a line and an integer k, we want to find k points in the intervals so that the minimum pairwise distance of the k points is maximized. Intuitively, given a set of n disjoint time intervals on a timeline, each of which is a time span we are allowed to check some...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences Communications and Computer Sciences, 2022/09/01, Vol.E105.A(9), pp.1181-1186
Hauptverfasser: ARAKI, Tetsuya, MIYATA, Hiroyuki, NAKANO, Shin-ichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1186
container_issue 9
container_start_page 1181
container_title IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
container_volume E105.A
creator ARAKI, Tetsuya
MIYATA, Hiroyuki
NAKANO, Shin-ichi
description Given a set of n disjoint intervals on a line and an integer k, we want to find k points in the intervals so that the minimum pairwise distance of the k points is maximized. Intuitively, given a set of n disjoint time intervals on a timeline, each of which is a time span we are allowed to check something, and an integer k, which is the number of times we will check something, we plan k checking times so that the checks occur at equal time intervals as much as possible, that is, we want to maximize the minimum time interval between the k checking times. We call the problem the k-dispersion problem on intervals. If we need to choose exactly one point in each interval, so k=n, and the disjoint intervals are given in the sorted order on the line, then two O(n) time algorithms to solve the problem are known. In this paper we give the first O(n) time algorithm to solve the problem for any constant k. Our algorithm works even if the disjoint intervals are given in any (not sorted) order. If the disjoint intervals are given in the sorted order on the line, then, by slightly modifying the algorithm, one can solve the problem in O(log n) time. This is the first sublinear time algorithm to solve the problem. Also we show some results on the k-dispersion problem on disks, including an FPTAS.
doi_str_mv 10.1587/transfun.2021DMP0004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2709085607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2709085607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-f9c9ae337444eebe83351fe07ccf264591014f13ac47cc6f228fd131b25ae5f13</originalsourceid><addsrcrecordid>eNpNUE1LAzEQDaLgWj178SB43jqTj93ssbRVCxVF9BzSONEtdXdNtoL_3khtLQy8YeZ9wGPsAmGISpfXfbBN9OtmyIHj5P4RAOQBy7CUKkchykOWQYVFrhXoY3YS4xIANUeZsfNJHTsKsW6byzSzpqfwZVfxlB35BHT2hwP2cjN9Ht_l84fb2Xg0z53kRZ_7ylWWUoSUkmhBWgiFnqB0zvNCqgoBpUdhnUynwnOu_SsKXHBlSaXHgF1tfLvQfq4p9mbZrkOTIg0voQKtCigTS25YLrQxBvKmC_WHDd8GwfxWYLYVmL0KkuxpI1vG3r7RTmRDX7sV_YumCMqMTLVd9kx2ZPdug6FG_ABP0mzU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2709085607</pqid></control><display><type>article</type><title>Dispersion on Intervals</title><source>J-STAGE Free</source><creator>ARAKI, Tetsuya ; MIYATA, Hiroyuki ; NAKANO, Shin-ichi</creator><creatorcontrib>ARAKI, Tetsuya ; MIYATA, Hiroyuki ; NAKANO, Shin-ichi</creatorcontrib><description>Given a set of n disjoint intervals on a line and an integer k, we want to find k points in the intervals so that the minimum pairwise distance of the k points is maximized. Intuitively, given a set of n disjoint time intervals on a timeline, each of which is a time span we are allowed to check something, and an integer k, which is the number of times we will check something, we plan k checking times so that the checks occur at equal time intervals as much as possible, that is, we want to maximize the minimum time interval between the k checking times. We call the problem the k-dispersion problem on intervals. If we need to choose exactly one point in each interval, so k=n, and the disjoint intervals are given in the sorted order on the line, then two O(n) time algorithms to solve the problem are known. In this paper we give the first O(n) time algorithm to solve the problem for any constant k. Our algorithm works even if the disjoint intervals are given in any (not sorted) order. If the disjoint intervals are given in the sorted order on the line, then, by slightly modifying the algorithm, one can solve the problem in O(log n) time. This is the first sublinear time algorithm to solve the problem. Also we show some results on the k-dispersion problem on disks, including an FPTAS.</description><identifier>ISSN: 0916-8508</identifier><identifier>EISSN: 1745-1337</identifier><identifier>DOI: 10.1587/transfun.2021DMP0004</identifier><language>eng</language><publisher>Tokyo: The Institute of Electronics, Information and Communication Engineers</publisher><subject>Algorithms ; Disks ; Dispersion ; dispersion problem ; facility location ; Integers ; Intervals</subject><ispartof>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2022/09/01, Vol.E105.A(9), pp.1181-1186</ispartof><rights>2022 The Institute of Electronics, Information and Communication Engineers</rights><rights>Copyright Japan Science and Technology Agency 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c426t-f9c9ae337444eebe83351fe07ccf264591014f13ac47cc6f228fd131b25ae5f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1883,27924,27925</link.rule.ids></links><search><creatorcontrib>ARAKI, Tetsuya</creatorcontrib><creatorcontrib>MIYATA, Hiroyuki</creatorcontrib><creatorcontrib>NAKANO, Shin-ichi</creatorcontrib><title>Dispersion on Intervals</title><title>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</title><addtitle>IEICE Trans. Fundamentals</addtitle><description>Given a set of n disjoint intervals on a line and an integer k, we want to find k points in the intervals so that the minimum pairwise distance of the k points is maximized. Intuitively, given a set of n disjoint time intervals on a timeline, each of which is a time span we are allowed to check something, and an integer k, which is the number of times we will check something, we plan k checking times so that the checks occur at equal time intervals as much as possible, that is, we want to maximize the minimum time interval between the k checking times. We call the problem the k-dispersion problem on intervals. If we need to choose exactly one point in each interval, so k=n, and the disjoint intervals are given in the sorted order on the line, then two O(n) time algorithms to solve the problem are known. In this paper we give the first O(n) time algorithm to solve the problem for any constant k. Our algorithm works even if the disjoint intervals are given in any (not sorted) order. If the disjoint intervals are given in the sorted order on the line, then, by slightly modifying the algorithm, one can solve the problem in O(log n) time. This is the first sublinear time algorithm to solve the problem. Also we show some results on the k-dispersion problem on disks, including an FPTAS.</description><subject>Algorithms</subject><subject>Disks</subject><subject>Dispersion</subject><subject>dispersion problem</subject><subject>facility location</subject><subject>Integers</subject><subject>Intervals</subject><issn>0916-8508</issn><issn>1745-1337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNUE1LAzEQDaLgWj178SB43jqTj93ssbRVCxVF9BzSONEtdXdNtoL_3khtLQy8YeZ9wGPsAmGISpfXfbBN9OtmyIHj5P4RAOQBy7CUKkchykOWQYVFrhXoY3YS4xIANUeZsfNJHTsKsW6byzSzpqfwZVfxlB35BHT2hwP2cjN9Ht_l84fb2Xg0z53kRZ_7ylWWUoSUkmhBWgiFnqB0zvNCqgoBpUdhnUynwnOu_SsKXHBlSaXHgF1tfLvQfq4p9mbZrkOTIg0voQKtCigTS25YLrQxBvKmC_WHDd8GwfxWYLYVmL0KkuxpI1vG3r7RTmRDX7sV_YumCMqMTLVd9kx2ZPdug6FG_ABP0mzU</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>ARAKI, Tetsuya</creator><creator>MIYATA, Hiroyuki</creator><creator>NAKANO, Shin-ichi</creator><general>The Institute of Electronics, Information and Communication Engineers</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20220901</creationdate><title>Dispersion on Intervals</title><author>ARAKI, Tetsuya ; MIYATA, Hiroyuki ; NAKANO, Shin-ichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-f9c9ae337444eebe83351fe07ccf264591014f13ac47cc6f228fd131b25ae5f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Disks</topic><topic>Dispersion</topic><topic>dispersion problem</topic><topic>facility location</topic><topic>Integers</topic><topic>Intervals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ARAKI, Tetsuya</creatorcontrib><creatorcontrib>MIYATA, Hiroyuki</creatorcontrib><creatorcontrib>NAKANO, Shin-ichi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ARAKI, Tetsuya</au><au>MIYATA, Hiroyuki</au><au>NAKANO, Shin-ichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dispersion on Intervals</atitle><jtitle>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</jtitle><addtitle>IEICE Trans. Fundamentals</addtitle><date>2022-09-01</date><risdate>2022</risdate><volume>E105.A</volume><issue>9</issue><spage>1181</spage><epage>1186</epage><pages>1181-1186</pages><artnum>2021DMP0004</artnum><issn>0916-8508</issn><eissn>1745-1337</eissn><abstract>Given a set of n disjoint intervals on a line and an integer k, we want to find k points in the intervals so that the minimum pairwise distance of the k points is maximized. Intuitively, given a set of n disjoint time intervals on a timeline, each of which is a time span we are allowed to check something, and an integer k, which is the number of times we will check something, we plan k checking times so that the checks occur at equal time intervals as much as possible, that is, we want to maximize the minimum time interval between the k checking times. We call the problem the k-dispersion problem on intervals. If we need to choose exactly one point in each interval, so k=n, and the disjoint intervals are given in the sorted order on the line, then two O(n) time algorithms to solve the problem are known. In this paper we give the first O(n) time algorithm to solve the problem for any constant k. Our algorithm works even if the disjoint intervals are given in any (not sorted) order. If the disjoint intervals are given in the sorted order on the line, then, by slightly modifying the algorithm, one can solve the problem in O(log n) time. This is the first sublinear time algorithm to solve the problem. Also we show some results on the k-dispersion problem on disks, including an FPTAS.</abstract><cop>Tokyo</cop><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transfun.2021DMP0004</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0916-8508
ispartof IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2022/09/01, Vol.E105.A(9), pp.1181-1186
issn 0916-8508
1745-1337
language eng
recordid cdi_proquest_journals_2709085607
source J-STAGE Free
subjects Algorithms
Disks
Dispersion
dispersion problem
facility location
Integers
Intervals
title Dispersion on Intervals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T13%3A06%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dispersion%20on%20Intervals&rft.jtitle=IEICE%20Transactions%20on%20Fundamentals%20of%20Electronics,%20Communications%20and%20Computer%20Sciences&rft.au=ARAKI,%20Tetsuya&rft.date=2022-09-01&rft.volume=E105.A&rft.issue=9&rft.spage=1181&rft.epage=1186&rft.pages=1181-1186&rft.artnum=2021DMP0004&rft.issn=0916-8508&rft.eissn=1745-1337&rft_id=info:doi/10.1587/transfun.2021DMP0004&rft_dat=%3Cproquest_cross%3E2709085607%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2709085607&rft_id=info:pmid/&rfr_iscdi=true