Quantification and Discriminant Evaluation of Unpleasant Emotions by Frequency Analysis Using EEG and ECG

The purpose of this study is to verify whether machine learning using electroencephalogram (EEG) and electrocardiogram (ECG) as inputs improves accuracy. The participants, 16 healthy adults, were given two stimulations: resting and unpleasant stimuli. Their EEG was measured 180 s immediately after t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Japan Society for Fuzzy Theory and Intelligent Informatics 2022/08/15, Vol.34(3), pp.654-662
Hauptverfasser: YAMAMOTO, Yusuke, TANAKA, Saya, HARACHI, Kento, MURAMATSU, Ayumi, TAKEMURA, Noriko, NAGAHARA, Hajime, MIZUNO-MATSUMOTO, Yuko, SHIMOJO, Shinji
Format: Artikel
Sprache:eng ; jpn
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 662
container_issue 3
container_start_page 654
container_title Journal of Japan Society for Fuzzy Theory and Intelligent Informatics
container_volume 34
creator YAMAMOTO, Yusuke
TANAKA, Saya
HARACHI, Kento
MURAMATSU, Ayumi
TAKEMURA, Noriko
NAGAHARA, Hajime
MIZUNO-MATSUMOTO, Yuko
SHIMOJO, Shinji
description The purpose of this study is to verify whether machine learning using electroencephalogram (EEG) and electrocardiogram (ECG) as inputs improves accuracy. The participants, 16 healthy adults, were given two stimulations: resting and unpleasant stimuli. Their EEG was measured 180 s immediately after the stimuli. The beta band of EEG and LF, HF, and LF/HF of ECG were calculated. The accuracy of the neural network was then compared using an EEG-only, ECG-only, and combined EEG and ECG dataset. The accuracy of the neural network using the combined EEG and ECG dataset was 79.51%, which was higher than that of the other datasets. The results suggest that emotional responses to resting and unpleasant stimuli may differ in brain and autonomic nervous system activity, and that combining both EEG and ECG indices may allow for more accurate discrimination.
doi_str_mv 10.3156/jsoft.34.3_654
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2709084634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2709084634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1234-ea304d3b385075f36dd5fe54ce26c7173fb48c3f6c00ff04edec3bea7df23c213</originalsourceid><addsrcrecordid>eNpNUN1LwzAQD6LgnL76HPC5M-mlH3uSMbspDERwzyFNk5nSpTNphf73Zq2IL3fH_T64-yF0T8kCaJI-1r7V3QLYAniasAs0o3lOoywmcBlmYFmULfP0Gt14XxOSLklCZ8i898J2RhspOtNaLGyFn42XzhyNDQguvkXTT1ir8d6eGiX8CBzb89bjcsAbp756ZeWAV1Y0gzce772xB1wU29GyWG9v0ZUWjVd3v32O9pviY_0S7d62r-vVLpI0BhYpAYRVUEKekCzRkFZVolXCpIpTmdEMdMlyCTqVhGhNmKqUhFKJrNIxyJjCHD1MvifXhqN8x-u2d-Esz-OMLEnOUmCBtZhY0rXeO6X5Kbws3MAp4ec4-RgnB8bHOIPgaRLUvhMH9UcXrjOyUf_poQTFHyI_hePKwg-fM4IL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2709084634</pqid></control><display><type>article</type><title>Quantification and Discriminant Evaluation of Unpleasant Emotions by Frequency Analysis Using EEG and ECG</title><source>J-STAGE (Japan Science &amp; Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>YAMAMOTO, Yusuke ; TANAKA, Saya ; HARACHI, Kento ; MURAMATSU, Ayumi ; TAKEMURA, Noriko ; NAGAHARA, Hajime ; MIZUNO-MATSUMOTO, Yuko ; SHIMOJO, Shinji</creator><creatorcontrib>YAMAMOTO, Yusuke ; TANAKA, Saya ; HARACHI, Kento ; MURAMATSU, Ayumi ; TAKEMURA, Noriko ; NAGAHARA, Hajime ; MIZUNO-MATSUMOTO, Yuko ; SHIMOJO, Shinji</creatorcontrib><description>The purpose of this study is to verify whether machine learning using electroencephalogram (EEG) and electrocardiogram (ECG) as inputs improves accuracy. The participants, 16 healthy adults, were given two stimulations: resting and unpleasant stimuli. Their EEG was measured 180 s immediately after the stimuli. The beta band of EEG and LF, HF, and LF/HF of ECG were calculated. The accuracy of the neural network was then compared using an EEG-only, ECG-only, and combined EEG and ECG dataset. The accuracy of the neural network using the combined EEG and ECG dataset was 79.51%, which was higher than that of the other datasets. The results suggest that emotional responses to resting and unpleasant stimuli may differ in brain and autonomic nervous system activity, and that combining both EEG and ECG indices may allow for more accurate discrimination.</description><identifier>ISSN: 1347-7986</identifier><identifier>EISSN: 1881-7203</identifier><identifier>DOI: 10.3156/jsoft.34.3_654</identifier><language>eng ; jpn</language><publisher>Iizuka: Japan Society for Fuzzy Theory and Intelligent Informatics</publisher><subject>Autonomic nervous system ; Datasets ; ECG ; EEG ; Electrocardiography ; Electroencephalography ; Emotional factors ; Frequency analysis ; Machine learning ; neural network ; Neural networks ; Stimuli</subject><ispartof>Journal of Japan Society for Fuzzy Theory and Intelligent Informatics, 2022/08/15, Vol.34(3), pp.654-662</ispartof><rights>2022 Japan Society for Fuzzy Theory and Intelligent Informatics</rights><rights>Copyright Japan Science and Technology Agency 2022</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1234-ea304d3b385075f36dd5fe54ce26c7173fb48c3f6c00ff04edec3bea7df23c213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1877,27901,27902</link.rule.ids></links><search><creatorcontrib>YAMAMOTO, Yusuke</creatorcontrib><creatorcontrib>TANAKA, Saya</creatorcontrib><creatorcontrib>HARACHI, Kento</creatorcontrib><creatorcontrib>MURAMATSU, Ayumi</creatorcontrib><creatorcontrib>TAKEMURA, Noriko</creatorcontrib><creatorcontrib>NAGAHARA, Hajime</creatorcontrib><creatorcontrib>MIZUNO-MATSUMOTO, Yuko</creatorcontrib><creatorcontrib>SHIMOJO, Shinji</creatorcontrib><title>Quantification and Discriminant Evaluation of Unpleasant Emotions by Frequency Analysis Using EEG and ECG</title><title>Journal of Japan Society for Fuzzy Theory and Intelligent Informatics</title><addtitle>J. SOFT</addtitle><description>The purpose of this study is to verify whether machine learning using electroencephalogram (EEG) and electrocardiogram (ECG) as inputs improves accuracy. The participants, 16 healthy adults, were given two stimulations: resting and unpleasant stimuli. Their EEG was measured 180 s immediately after the stimuli. The beta band of EEG and LF, HF, and LF/HF of ECG were calculated. The accuracy of the neural network was then compared using an EEG-only, ECG-only, and combined EEG and ECG dataset. The accuracy of the neural network using the combined EEG and ECG dataset was 79.51%, which was higher than that of the other datasets. The results suggest that emotional responses to resting and unpleasant stimuli may differ in brain and autonomic nervous system activity, and that combining both EEG and ECG indices may allow for more accurate discrimination.</description><subject>Autonomic nervous system</subject><subject>Datasets</subject><subject>ECG</subject><subject>EEG</subject><subject>Electrocardiography</subject><subject>Electroencephalography</subject><subject>Emotional factors</subject><subject>Frequency analysis</subject><subject>Machine learning</subject><subject>neural network</subject><subject>Neural networks</subject><subject>Stimuli</subject><issn>1347-7986</issn><issn>1881-7203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNUN1LwzAQD6LgnL76HPC5M-mlH3uSMbspDERwzyFNk5nSpTNphf73Zq2IL3fH_T64-yF0T8kCaJI-1r7V3QLYAniasAs0o3lOoywmcBlmYFmULfP0Gt14XxOSLklCZ8i898J2RhspOtNaLGyFn42XzhyNDQguvkXTT1ir8d6eGiX8CBzb89bjcsAbp756ZeWAV1Y0gzce772xB1wU29GyWG9v0ZUWjVd3v32O9pviY_0S7d62r-vVLpI0BhYpAYRVUEKekCzRkFZVolXCpIpTmdEMdMlyCTqVhGhNmKqUhFKJrNIxyJjCHD1MvifXhqN8x-u2d-Esz-OMLEnOUmCBtZhY0rXeO6X5Kbws3MAp4ec4-RgnB8bHOIPgaRLUvhMH9UcXrjOyUf_poQTFHyI_hePKwg-fM4IL</recordid><startdate>20220815</startdate><enddate>20220815</enddate><creator>YAMAMOTO, Yusuke</creator><creator>TANAKA, Saya</creator><creator>HARACHI, Kento</creator><creator>MURAMATSU, Ayumi</creator><creator>TAKEMURA, Noriko</creator><creator>NAGAHARA, Hajime</creator><creator>MIZUNO-MATSUMOTO, Yuko</creator><creator>SHIMOJO, Shinji</creator><general>Japan Society for Fuzzy Theory and Intelligent Informatics</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20220815</creationdate><title>Quantification and Discriminant Evaluation of Unpleasant Emotions by Frequency Analysis Using EEG and ECG</title><author>YAMAMOTO, Yusuke ; TANAKA, Saya ; HARACHI, Kento ; MURAMATSU, Ayumi ; TAKEMURA, Noriko ; NAGAHARA, Hajime ; MIZUNO-MATSUMOTO, Yuko ; SHIMOJO, Shinji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1234-ea304d3b385075f36dd5fe54ce26c7173fb48c3f6c00ff04edec3bea7df23c213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; jpn</language><creationdate>2022</creationdate><topic>Autonomic nervous system</topic><topic>Datasets</topic><topic>ECG</topic><topic>EEG</topic><topic>Electrocardiography</topic><topic>Electroencephalography</topic><topic>Emotional factors</topic><topic>Frequency analysis</topic><topic>Machine learning</topic><topic>neural network</topic><topic>Neural networks</topic><topic>Stimuli</topic><toplevel>online_resources</toplevel><creatorcontrib>YAMAMOTO, Yusuke</creatorcontrib><creatorcontrib>TANAKA, Saya</creatorcontrib><creatorcontrib>HARACHI, Kento</creatorcontrib><creatorcontrib>MURAMATSU, Ayumi</creatorcontrib><creatorcontrib>TAKEMURA, Noriko</creatorcontrib><creatorcontrib>NAGAHARA, Hajime</creatorcontrib><creatorcontrib>MIZUNO-MATSUMOTO, Yuko</creatorcontrib><creatorcontrib>SHIMOJO, Shinji</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of Japan Society for Fuzzy Theory and Intelligent Informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>YAMAMOTO, Yusuke</au><au>TANAKA, Saya</au><au>HARACHI, Kento</au><au>MURAMATSU, Ayumi</au><au>TAKEMURA, Noriko</au><au>NAGAHARA, Hajime</au><au>MIZUNO-MATSUMOTO, Yuko</au><au>SHIMOJO, Shinji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantification and Discriminant Evaluation of Unpleasant Emotions by Frequency Analysis Using EEG and ECG</atitle><jtitle>Journal of Japan Society for Fuzzy Theory and Intelligent Informatics</jtitle><addtitle>J. SOFT</addtitle><date>2022-08-15</date><risdate>2022</risdate><volume>34</volume><issue>3</issue><spage>654</spage><epage>662</epage><pages>654-662</pages><issn>1347-7986</issn><eissn>1881-7203</eissn><abstract>The purpose of this study is to verify whether machine learning using electroencephalogram (EEG) and electrocardiogram (ECG) as inputs improves accuracy. The participants, 16 healthy adults, were given two stimulations: resting and unpleasant stimuli. Their EEG was measured 180 s immediately after the stimuli. The beta band of EEG and LF, HF, and LF/HF of ECG were calculated. The accuracy of the neural network was then compared using an EEG-only, ECG-only, and combined EEG and ECG dataset. The accuracy of the neural network using the combined EEG and ECG dataset was 79.51%, which was higher than that of the other datasets. The results suggest that emotional responses to resting and unpleasant stimuli may differ in brain and autonomic nervous system activity, and that combining both EEG and ECG indices may allow for more accurate discrimination.</abstract><cop>Iizuka</cop><pub>Japan Society for Fuzzy Theory and Intelligent Informatics</pub><doi>10.3156/jsoft.34.3_654</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1347-7986
ispartof Journal of Japan Society for Fuzzy Theory and Intelligent Informatics, 2022/08/15, Vol.34(3), pp.654-662
issn 1347-7986
1881-7203
language eng ; jpn
recordid cdi_proquest_journals_2709084634
source J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Autonomic nervous system
Datasets
ECG
EEG
Electrocardiography
Electroencephalography
Emotional factors
Frequency analysis
Machine learning
neural network
Neural networks
Stimuli
title Quantification and Discriminant Evaluation of Unpleasant Emotions by Frequency Analysis Using EEG and ECG
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T04%3A21%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantification%20and%20Discriminant%20Evaluation%20of%20Unpleasant%20Emotions%20by%20Frequency%20Analysis%20Using%20EEG%20and%20ECG&rft.jtitle=Journal%20of%20Japan%20Society%20for%20Fuzzy%20Theory%20and%20Intelligent%20Informatics&rft.au=YAMAMOTO,%20Yusuke&rft.date=2022-08-15&rft.volume=34&rft.issue=3&rft.spage=654&rft.epage=662&rft.pages=654-662&rft.issn=1347-7986&rft.eissn=1881-7203&rft_id=info:doi/10.3156/jsoft.34.3_654&rft_dat=%3Cproquest_cross%3E2709084634%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2709084634&rft_id=info:pmid/&rfr_iscdi=true