BOUNDNESS OF INTERSECTION NUMBERS FOR ACTIONS BY TWO-DIMENSIONAL BIHOLOMORPHISMS

We say that a group G of local (maybe formal) biholomorphisms satisfies the uniform intersection property if the intersection multiplicity $(\phi (V), W)$ takes only finitely many values as a function of G for any choice of analytic sets V and W of complementary dimension. In dimension $2$ we show t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Institute of Mathematics of Jussieu 2022-09, Vol.21 (5), p.1677-1700
1. Verfasser: Ribón, Javier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1700
container_issue 5
container_start_page 1677
container_title Journal of the Institute of Mathematics of Jussieu
container_volume 21
creator Ribón, Javier
description We say that a group G of local (maybe formal) biholomorphisms satisfies the uniform intersection property if the intersection multiplicity $(\phi (V), W)$ takes only finitely many values as a function of G for any choice of analytic sets V and W of complementary dimension. In dimension $2$ we show that G satisfies the uniform intersection property if and only if it is finitely determined – that is, if there exists a natural number k such that different elements of G have different Taylor expansions of degree k at the origin. We also prove that G is finitely determined if and only if the action of G on the space of germs of analytic curves has discrete orbits.
doi_str_mv 10.1017/S1474748020000717
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2708900431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1474748020000717</cupid><sourcerecordid>2708900431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c269t-19659749a22960f8867c6408ad324a7d4aa5ce9dfe9db3f2eb4dbc591975677f3</originalsourceid><addsrcrecordid>eNp1UEtPwzAMjhBIjMEP4BaJc8F5tGmO6-hYpbaZlk6IU5W-0CbGRrod-PdkD4kDwpZl-_P32ZIRuifwSICIJ024cB4CBWeCiAs0cJDvMWBweay5d5hfo5u-XwHQgPpkgGaRWuTPeaw1VhOc5EU81_G4SFSO80UWuQ5P1ByPjpDG0RsuXpX3nGRxrh0ySnGUTFWqMjWfTROd6Vt01ZmPvr075yFaTOJiPPVS9ZKMR6lX00DuPCIDXwouDaUygC4MA1EHHELTMMqNaLgxft3KpnNRsY62FW-q2pdECj8QomND9HDau7Wbr33b78rVZm8_3cmSCgglAGfEsciJVdtN39u2K7d2uTb2uyRQHh5X_nmc07Czxqwru2ze29_V_6t-AFKRZ4s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708900431</pqid></control><display><type>article</type><title>BOUNDNESS OF INTERSECTION NUMBERS FOR ACTIONS BY TWO-DIMENSIONAL BIHOLOMORPHISMS</title><source>Cambridge University Press Journals Complete</source><creator>Ribón, Javier</creator><creatorcontrib>Ribón, Javier</creatorcontrib><description>We say that a group G of local (maybe formal) biholomorphisms satisfies the uniform intersection property if the intersection multiplicity $(\phi (V), W)$ takes only finitely many values as a function of G for any choice of analytic sets V and W of complementary dimension. In dimension $2$ we show that G satisfies the uniform intersection property if and only if it is finitely determined – that is, if there exists a natural number k such that different elements of G have different Taylor expansions of degree k at the origin. We also prove that G is finitely determined if and only if the action of G on the space of germs of analytic curves has discrete orbits.</description><identifier>ISSN: 1474-7480</identifier><identifier>EISSN: 1475-3030</identifier><identifier>DOI: 10.1017/S1474748020000717</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Intersections ; Lie groups</subject><ispartof>Journal of the Institute of Mathematics of Jussieu, 2022-09, Vol.21 (5), p.1677-1700</ispartof><rights>The Author(s), 2021. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c269t-19659749a22960f8867c6408ad324a7d4aa5ce9dfe9db3f2eb4dbc591975677f3</cites><orcidid>0000-0001-7072-2883</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1474748020000717/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,777,781,27906,27907,55610</link.rule.ids></links><search><creatorcontrib>Ribón, Javier</creatorcontrib><title>BOUNDNESS OF INTERSECTION NUMBERS FOR ACTIONS BY TWO-DIMENSIONAL BIHOLOMORPHISMS</title><title>Journal of the Institute of Mathematics of Jussieu</title><addtitle>J. Inst. Math. Jussieu</addtitle><description>We say that a group G of local (maybe formal) biholomorphisms satisfies the uniform intersection property if the intersection multiplicity $(\phi (V), W)$ takes only finitely many values as a function of G for any choice of analytic sets V and W of complementary dimension. In dimension $2$ we show that G satisfies the uniform intersection property if and only if it is finitely determined – that is, if there exists a natural number k such that different elements of G have different Taylor expansions of degree k at the origin. We also prove that G is finitely determined if and only if the action of G on the space of germs of analytic curves has discrete orbits.</description><subject>Intersections</subject><subject>Lie groups</subject><issn>1474-7480</issn><issn>1475-3030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UEtPwzAMjhBIjMEP4BaJc8F5tGmO6-hYpbaZlk6IU5W-0CbGRrod-PdkD4kDwpZl-_P32ZIRuifwSICIJ024cB4CBWeCiAs0cJDvMWBweay5d5hfo5u-XwHQgPpkgGaRWuTPeaw1VhOc5EU81_G4SFSO80UWuQ5P1ByPjpDG0RsuXpX3nGRxrh0ySnGUTFWqMjWfTROd6Vt01ZmPvr075yFaTOJiPPVS9ZKMR6lX00DuPCIDXwouDaUygC4MA1EHHELTMMqNaLgxft3KpnNRsY62FW-q2pdECj8QomND9HDau7Wbr33b78rVZm8_3cmSCgglAGfEsciJVdtN39u2K7d2uTb2uyRQHh5X_nmc07Czxqwru2ze29_V_6t-AFKRZ4s</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Ribón, Javier</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-7072-2883</orcidid></search><sort><creationdate>20220901</creationdate><title>BOUNDNESS OF INTERSECTION NUMBERS FOR ACTIONS BY TWO-DIMENSIONAL BIHOLOMORPHISMS</title><author>Ribón, Javier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c269t-19659749a22960f8867c6408ad324a7d4aa5ce9dfe9db3f2eb4dbc591975677f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Intersections</topic><topic>Lie groups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ribón, Javier</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of the Institute of Mathematics of Jussieu</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ribón, Javier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BOUNDNESS OF INTERSECTION NUMBERS FOR ACTIONS BY TWO-DIMENSIONAL BIHOLOMORPHISMS</atitle><jtitle>Journal of the Institute of Mathematics of Jussieu</jtitle><addtitle>J. Inst. Math. Jussieu</addtitle><date>2022-09-01</date><risdate>2022</risdate><volume>21</volume><issue>5</issue><spage>1677</spage><epage>1700</epage><pages>1677-1700</pages><issn>1474-7480</issn><eissn>1475-3030</eissn><abstract>We say that a group G of local (maybe formal) biholomorphisms satisfies the uniform intersection property if the intersection multiplicity $(\phi (V), W)$ takes only finitely many values as a function of G for any choice of analytic sets V and W of complementary dimension. In dimension $2$ we show that G satisfies the uniform intersection property if and only if it is finitely determined – that is, if there exists a natural number k such that different elements of G have different Taylor expansions of degree k at the origin. We also prove that G is finitely determined if and only if the action of G on the space of germs of analytic curves has discrete orbits.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S1474748020000717</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0001-7072-2883</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1474-7480
ispartof Journal of the Institute of Mathematics of Jussieu, 2022-09, Vol.21 (5), p.1677-1700
issn 1474-7480
1475-3030
language eng
recordid cdi_proquest_journals_2708900431
source Cambridge University Press Journals Complete
subjects Intersections
Lie groups
title BOUNDNESS OF INTERSECTION NUMBERS FOR ACTIONS BY TWO-DIMENSIONAL BIHOLOMORPHISMS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T11%3A32%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BOUNDNESS%20OF%20INTERSECTION%20NUMBERS%20FOR%20ACTIONS%20BY%20TWO-DIMENSIONAL%20BIHOLOMORPHISMS&rft.jtitle=Journal%20of%20the%20Institute%20of%20Mathematics%20of%20Jussieu&rft.au=Rib%C3%B3n,%20Javier&rft.date=2022-09-01&rft.volume=21&rft.issue=5&rft.spage=1677&rft.epage=1700&rft.pages=1677-1700&rft.issn=1474-7480&rft.eissn=1475-3030&rft_id=info:doi/10.1017/S1474748020000717&rft_dat=%3Cproquest_cross%3E2708900431%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2708900431&rft_id=info:pmid/&rft_cupid=10_1017_S1474748020000717&rfr_iscdi=true