BOUNDNESS OF INTERSECTION NUMBERS FOR ACTIONS BY TWO-DIMENSIONAL BIHOLOMORPHISMS
We say that a group G of local (maybe formal) biholomorphisms satisfies the uniform intersection property if the intersection multiplicity $(\phi (V), W)$ takes only finitely many values as a function of G for any choice of analytic sets V and W of complementary dimension. In dimension $2$ we show t...
Gespeichert in:
Veröffentlicht in: | Journal of the Institute of Mathematics of Jussieu 2022-09, Vol.21 (5), p.1677-1700 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We say that a group G of local (maybe formal) biholomorphisms satisfies the uniform intersection property if the intersection multiplicity
$(\phi (V), W)$
takes only finitely many values as a function of G for any choice of analytic sets V and W of complementary dimension. In dimension
$2$
we show that G satisfies the uniform intersection property if and only if it is finitely determined – that is, if there exists a natural number k such that different elements of G have different Taylor expansions of degree k at the origin. We also prove that G is finitely determined if and only if the action of G on the space of germs of analytic curves has discrete orbits. |
---|---|
ISSN: | 1474-7480 1475-3030 |
DOI: | 10.1017/S1474748020000717 |