AWADA: Attention-Weighted Adversarial Domain Adaptation for Object Detection

Object detection networks have reached an impressive performance level, yet a lack of suitable data in specific applications often limits it in practice. Typically, additional data sources are utilized to support the training task. In these, however, domain gaps between different data sources pose a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-08
Hauptverfasser: Menke, Maximilian, Wenzel, Thomas, Schwung, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Menke, Maximilian
Wenzel, Thomas
Schwung, Andreas
description Object detection networks have reached an impressive performance level, yet a lack of suitable data in specific applications often limits it in practice. Typically, additional data sources are utilized to support the training task. In these, however, domain gaps between different data sources pose a challenge in deep learning. GAN-based image-to-image style-transfer is commonly applied to shrink the domain gap, but is unstable and decoupled from the object detection task. We propose AWADA, an Attention-Weighted Adversarial Domain Adaptation framework for creating a feedback loop between style-transformation and detection task. By constructing foreground object attention maps from object detector proposals, we focus the transformation on foreground object regions and stabilize style-transfer training. In extensive experiments and ablation studies, we show that AWADA reaches state-of-the-art unsupervised domain adaptation object detection performance in the commonly used benchmarks for tasks such as synthetic-to-real, adverse weather and cross-camera adaptation.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2708877282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2708877282</sourcerecordid><originalsourceid>FETCH-proquest_journals_27088772823</originalsourceid><addsrcrecordid>eNqNirEKwjAUAIMgWLT_EHAuxFdrgluwioPgInQs0b5qSk1qkvr9RvADnA7ubkISyPNVJtYAM5J63zHGYMOhKPKEnGQlS7mlMgQ0QVuTVajvj4ANlc0bnVdOq56W9qm0iUoNQX032lpHz9cOb4GWGCKiXJBpq3qP6Y9zsjzsL7tjNjj7GtGHurOjMzHVwJkQnIOA_L_rA9QiPMs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708877282</pqid></control><display><type>article</type><title>AWADA: Attention-Weighted Adversarial Domain Adaptation for Object Detection</title><source>Free E- Journals</source><creator>Menke, Maximilian ; Wenzel, Thomas ; Schwung, Andreas</creator><creatorcontrib>Menke, Maximilian ; Wenzel, Thomas ; Schwung, Andreas</creatorcontrib><description>Object detection networks have reached an impressive performance level, yet a lack of suitable data in specific applications often limits it in practice. Typically, additional data sources are utilized to support the training task. In these, however, domain gaps between different data sources pose a challenge in deep learning. GAN-based image-to-image style-transfer is commonly applied to shrink the domain gap, but is unstable and decoupled from the object detection task. We propose AWADA, an Attention-Weighted Adversarial Domain Adaptation framework for creating a feedback loop between style-transformation and detection task. By constructing foreground object attention maps from object detector proposals, we focus the transformation on foreground object regions and stabilize style-transfer training. In extensive experiments and ablation studies, we show that AWADA reaches state-of-the-art unsupervised domain adaptation object detection performance in the commonly used benchmarks for tasks such as synthetic-to-real, adverse weather and cross-camera adaptation.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Ablation ; Adaptation ; Data sources ; Domains ; Feedback loops ; Object recognition ; Training ; Transformations (mathematics)</subject><ispartof>arXiv.org, 2022-08</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Menke, Maximilian</creatorcontrib><creatorcontrib>Wenzel, Thomas</creatorcontrib><creatorcontrib>Schwung, Andreas</creatorcontrib><title>AWADA: Attention-Weighted Adversarial Domain Adaptation for Object Detection</title><title>arXiv.org</title><description>Object detection networks have reached an impressive performance level, yet a lack of suitable data in specific applications often limits it in practice. Typically, additional data sources are utilized to support the training task. In these, however, domain gaps between different data sources pose a challenge in deep learning. GAN-based image-to-image style-transfer is commonly applied to shrink the domain gap, but is unstable and decoupled from the object detection task. We propose AWADA, an Attention-Weighted Adversarial Domain Adaptation framework for creating a feedback loop between style-transformation and detection task. By constructing foreground object attention maps from object detector proposals, we focus the transformation on foreground object regions and stabilize style-transfer training. In extensive experiments and ablation studies, we show that AWADA reaches state-of-the-art unsupervised domain adaptation object detection performance in the commonly used benchmarks for tasks such as synthetic-to-real, adverse weather and cross-camera adaptation.</description><subject>Ablation</subject><subject>Adaptation</subject><subject>Data sources</subject><subject>Domains</subject><subject>Feedback loops</subject><subject>Object recognition</subject><subject>Training</subject><subject>Transformations (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNirEKwjAUAIMgWLT_EHAuxFdrgluwioPgInQs0b5qSk1qkvr9RvADnA7ubkISyPNVJtYAM5J63zHGYMOhKPKEnGQlS7mlMgQ0QVuTVajvj4ANlc0bnVdOq56W9qm0iUoNQX032lpHz9cOb4GWGCKiXJBpq3qP6Y9zsjzsL7tjNjj7GtGHurOjMzHVwJkQnIOA_L_rA9QiPMs</recordid><startdate>20220831</startdate><enddate>20220831</enddate><creator>Menke, Maximilian</creator><creator>Wenzel, Thomas</creator><creator>Schwung, Andreas</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220831</creationdate><title>AWADA: Attention-Weighted Adversarial Domain Adaptation for Object Detection</title><author>Menke, Maximilian ; Wenzel, Thomas ; Schwung, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27088772823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ablation</topic><topic>Adaptation</topic><topic>Data sources</topic><topic>Domains</topic><topic>Feedback loops</topic><topic>Object recognition</topic><topic>Training</topic><topic>Transformations (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Menke, Maximilian</creatorcontrib><creatorcontrib>Wenzel, Thomas</creatorcontrib><creatorcontrib>Schwung, Andreas</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Menke, Maximilian</au><au>Wenzel, Thomas</au><au>Schwung, Andreas</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>AWADA: Attention-Weighted Adversarial Domain Adaptation for Object Detection</atitle><jtitle>arXiv.org</jtitle><date>2022-08-31</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Object detection networks have reached an impressive performance level, yet a lack of suitable data in specific applications often limits it in practice. Typically, additional data sources are utilized to support the training task. In these, however, domain gaps between different data sources pose a challenge in deep learning. GAN-based image-to-image style-transfer is commonly applied to shrink the domain gap, but is unstable and decoupled from the object detection task. We propose AWADA, an Attention-Weighted Adversarial Domain Adaptation framework for creating a feedback loop between style-transformation and detection task. By constructing foreground object attention maps from object detector proposals, we focus the transformation on foreground object regions and stabilize style-transfer training. In extensive experiments and ablation studies, we show that AWADA reaches state-of-the-art unsupervised domain adaptation object detection performance in the commonly used benchmarks for tasks such as synthetic-to-real, adverse weather and cross-camera adaptation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2708877282
source Free E- Journals
subjects Ablation
Adaptation
Data sources
Domains
Feedback loops
Object recognition
Training
Transformations (mathematics)
title AWADA: Attention-Weighted Adversarial Domain Adaptation for Object Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A24%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=AWADA:%20Attention-Weighted%20Adversarial%20Domain%20Adaptation%20for%20Object%20Detection&rft.jtitle=arXiv.org&rft.au=Menke,%20Maximilian&rft.date=2022-08-31&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2708877282%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2708877282&rft_id=info:pmid/&rfr_iscdi=true