Convolutional Neural Networks for Estimating the Ripening State of Fuji Apples Using Visible and Near-Infrared Spectroscopy
The quality of fresh apple fruits is a major concern for consumers and manufacturers. Classification of these fruits according to their ripening stage is one of the most decisive factors in determining their quality. In this regard, the aim of this work is to develop a new method for non-destructive...
Gespeichert in:
Veröffentlicht in: | Food and bioprocess technology 2022-10, Vol.15 (10), p.2226-2236 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2236 |
---|---|
container_issue | 10 |
container_start_page | 2226 |
container_title | Food and bioprocess technology |
container_volume | 15 |
creator | Benmouna, Brahim García-Mateos, Ginés Sabzi, Sajad Fernandez-Beltran, Ruben Parras-Burgos, Dolores Molina-Martínez, José Miguel |
description | The quality of fresh apple fruits is a major concern for consumers and manufacturers. Classification of these fruits according to their ripening stage is one of the most decisive factors in determining their quality. In this regard, the aim of this work is to develop a new method for non-destructive classification of the ripening state of Fuji apples using hyperspectral information in the visible and near-infrared (Vis/NIR) regions. Spectra of 172 apple samples in the range from 450 to 1000 nm were studied, which were selected from four different ripening stages. A convolutional neural network (CNN) model was proposed to perform the classification of the samples. The proposed method was compared with three alternative methods based on artificial neural networks (ANN), support vector machines (SVM), and
k
-nearest neighbors (KNN). The results revealed that the CNN method outperformed the alternative methods, achieving a correct classification rate (CCR) of 96.5%, compared with an average of 89.5%, 95.93%, and 91.68% for ANN, SVM, and KNN, respectively. These results will help in the development of a new device for fast and accurate estimation of the quality of apples. |
doi_str_mv | 10.1007/s11947-022-02880-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2708875172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2708875172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-d008681d16cf204b01edd3f09e11a2a5497f6bb4a1e434e81553abda6a9f919f3</originalsourceid><addsrcrecordid>eNp9UEFOwzAQtBBIlMIHOFniHPDGTpwcq6qFShVIlHK1nMQuKSEOtgOq-Dxug-DGYbW72pnRziB0CeQaCOE3DiBnPCJxHCrLSMSP0AhymkQJsPz4d6bkFJ05tyUkJQzoCH1NTfthmt7XppUNvle9PTT_aeyrw9pYPHO-fpO-bjfYvyj8WHeq3S8rL73CRuN5v63xpOsa5fDa7U_PtauLRmHZVkFL2mjRaiutqvCqU6W3xpWm252jEy0bpy5--hit57On6V20fLhdTCfLqKQp9VFFSJZmUEFa6piwgoCqKqpJrgBkLBOWc50WBZOgGGUqgyShsqhkKnOdQ67pGF0Nup01771yXmxNb4NdJ2JOsownwOOAigdUGd5zVmnR2eDb7gQQsQ9ZDCGLELI4hCx4INGB5AK43Sj7J_0P6xsKloDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708875172</pqid></control><display><type>article</type><title>Convolutional Neural Networks for Estimating the Ripening State of Fuji Apples Using Visible and Near-Infrared Spectroscopy</title><source>SpringerLink Journals</source><creator>Benmouna, Brahim ; García-Mateos, Ginés ; Sabzi, Sajad ; Fernandez-Beltran, Ruben ; Parras-Burgos, Dolores ; Molina-Martínez, José Miguel</creator><creatorcontrib>Benmouna, Brahim ; García-Mateos, Ginés ; Sabzi, Sajad ; Fernandez-Beltran, Ruben ; Parras-Burgos, Dolores ; Molina-Martínez, José Miguel</creatorcontrib><description>The quality of fresh apple fruits is a major concern for consumers and manufacturers. Classification of these fruits according to their ripening stage is one of the most decisive factors in determining their quality. In this regard, the aim of this work is to develop a new method for non-destructive classification of the ripening state of Fuji apples using hyperspectral information in the visible and near-infrared (Vis/NIR) regions. Spectra of 172 apple samples in the range from 450 to 1000 nm were studied, which were selected from four different ripening stages. A convolutional neural network (CNN) model was proposed to perform the classification of the samples. The proposed method was compared with three alternative methods based on artificial neural networks (ANN), support vector machines (SVM), and
k
-nearest neighbors (KNN). The results revealed that the CNN method outperformed the alternative methods, achieving a correct classification rate (CCR) of 96.5%, compared with an average of 89.5%, 95.93%, and 91.68% for ANN, SVM, and KNN, respectively. These results will help in the development of a new device for fast and accurate estimation of the quality of apples.</description><identifier>ISSN: 1935-5130</identifier><identifier>EISSN: 1935-5149</identifier><identifier>DOI: 10.1007/s11947-022-02880-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Agriculture ; Apples ; Artificial neural networks ; Biotechnology ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Classification ; Estimation ; Food Science ; Fruits ; I.R. radiation ; Infrared spectra ; Infrared spectroscopy ; Near infrared radiation ; Neural networks ; Nondestructive testing ; Ripening ; Spectrum analysis ; Support vector machines</subject><ispartof>Food and bioprocess technology, 2022-10, Vol.15 (10), p.2226-2236</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-d008681d16cf204b01edd3f09e11a2a5497f6bb4a1e434e81553abda6a9f919f3</citedby><cites>FETCH-LOGICAL-c363t-d008681d16cf204b01edd3f09e11a2a5497f6bb4a1e434e81553abda6a9f919f3</cites><orcidid>0000-0003-1374-8416 ; 0000-0001-7259-5937 ; 0000-0001-8122-5487 ; 0000-0002-2480-4260 ; 0000-0003-2521-4454 ; 0000-0003-2439-5329</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11947-022-02880-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11947-022-02880-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Benmouna, Brahim</creatorcontrib><creatorcontrib>García-Mateos, Ginés</creatorcontrib><creatorcontrib>Sabzi, Sajad</creatorcontrib><creatorcontrib>Fernandez-Beltran, Ruben</creatorcontrib><creatorcontrib>Parras-Burgos, Dolores</creatorcontrib><creatorcontrib>Molina-Martínez, José Miguel</creatorcontrib><title>Convolutional Neural Networks for Estimating the Ripening State of Fuji Apples Using Visible and Near-Infrared Spectroscopy</title><title>Food and bioprocess technology</title><addtitle>Food Bioprocess Technol</addtitle><description>The quality of fresh apple fruits is a major concern for consumers and manufacturers. Classification of these fruits according to their ripening stage is one of the most decisive factors in determining their quality. In this regard, the aim of this work is to develop a new method for non-destructive classification of the ripening state of Fuji apples using hyperspectral information in the visible and near-infrared (Vis/NIR) regions. Spectra of 172 apple samples in the range from 450 to 1000 nm were studied, which were selected from four different ripening stages. A convolutional neural network (CNN) model was proposed to perform the classification of the samples. The proposed method was compared with three alternative methods based on artificial neural networks (ANN), support vector machines (SVM), and
k
-nearest neighbors (KNN). The results revealed that the CNN method outperformed the alternative methods, achieving a correct classification rate (CCR) of 96.5%, compared with an average of 89.5%, 95.93%, and 91.68% for ANN, SVM, and KNN, respectively. These results will help in the development of a new device for fast and accurate estimation of the quality of apples.</description><subject>Agriculture</subject><subject>Apples</subject><subject>Artificial neural networks</subject><subject>Biotechnology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Classification</subject><subject>Estimation</subject><subject>Food Science</subject><subject>Fruits</subject><subject>I.R. radiation</subject><subject>Infrared spectra</subject><subject>Infrared spectroscopy</subject><subject>Near infrared radiation</subject><subject>Neural networks</subject><subject>Nondestructive testing</subject><subject>Ripening</subject><subject>Spectrum analysis</subject><subject>Support vector machines</subject><issn>1935-5130</issn><issn>1935-5149</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9UEFOwzAQtBBIlMIHOFniHPDGTpwcq6qFShVIlHK1nMQuKSEOtgOq-Dxug-DGYbW72pnRziB0CeQaCOE3DiBnPCJxHCrLSMSP0AhymkQJsPz4d6bkFJ05tyUkJQzoCH1NTfthmt7XppUNvle9PTT_aeyrw9pYPHO-fpO-bjfYvyj8WHeq3S8rL73CRuN5v63xpOsa5fDa7U_PtauLRmHZVkFL2mjRaiutqvCqU6W3xpWm252jEy0bpy5--hit57On6V20fLhdTCfLqKQp9VFFSJZmUEFa6piwgoCqKqpJrgBkLBOWc50WBZOgGGUqgyShsqhkKnOdQ67pGF0Nup01771yXmxNb4NdJ2JOsownwOOAigdUGd5zVmnR2eDb7gQQsQ9ZDCGLELI4hCx4INGB5AK43Sj7J_0P6xsKloDw</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Benmouna, Brahim</creator><creator>García-Mateos, Ginés</creator><creator>Sabzi, Sajad</creator><creator>Fernandez-Beltran, Ruben</creator><creator>Parras-Burgos, Dolores</creator><creator>Molina-Martínez, José Miguel</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M0K</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-1374-8416</orcidid><orcidid>https://orcid.org/0000-0001-7259-5937</orcidid><orcidid>https://orcid.org/0000-0001-8122-5487</orcidid><orcidid>https://orcid.org/0000-0002-2480-4260</orcidid><orcidid>https://orcid.org/0000-0003-2521-4454</orcidid><orcidid>https://orcid.org/0000-0003-2439-5329</orcidid></search><sort><creationdate>20221001</creationdate><title>Convolutional Neural Networks for Estimating the Ripening State of Fuji Apples Using Visible and Near-Infrared Spectroscopy</title><author>Benmouna, Brahim ; García-Mateos, Ginés ; Sabzi, Sajad ; Fernandez-Beltran, Ruben ; Parras-Burgos, Dolores ; Molina-Martínez, José Miguel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-d008681d16cf204b01edd3f09e11a2a5497f6bb4a1e434e81553abda6a9f919f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agriculture</topic><topic>Apples</topic><topic>Artificial neural networks</topic><topic>Biotechnology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Classification</topic><topic>Estimation</topic><topic>Food Science</topic><topic>Fruits</topic><topic>I.R. radiation</topic><topic>Infrared spectra</topic><topic>Infrared spectroscopy</topic><topic>Near infrared radiation</topic><topic>Neural networks</topic><topic>Nondestructive testing</topic><topic>Ripening</topic><topic>Spectrum analysis</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benmouna, Brahim</creatorcontrib><creatorcontrib>García-Mateos, Ginés</creatorcontrib><creatorcontrib>Sabzi, Sajad</creatorcontrib><creatorcontrib>Fernandez-Beltran, Ruben</creatorcontrib><creatorcontrib>Parras-Burgos, Dolores</creatorcontrib><creatorcontrib>Molina-Martínez, José Miguel</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Agricultural Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Food and bioprocess technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benmouna, Brahim</au><au>García-Mateos, Ginés</au><au>Sabzi, Sajad</au><au>Fernandez-Beltran, Ruben</au><au>Parras-Burgos, Dolores</au><au>Molina-Martínez, José Miguel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convolutional Neural Networks for Estimating the Ripening State of Fuji Apples Using Visible and Near-Infrared Spectroscopy</atitle><jtitle>Food and bioprocess technology</jtitle><stitle>Food Bioprocess Technol</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>15</volume><issue>10</issue><spage>2226</spage><epage>2236</epage><pages>2226-2236</pages><issn>1935-5130</issn><eissn>1935-5149</eissn><abstract>The quality of fresh apple fruits is a major concern for consumers and manufacturers. Classification of these fruits according to their ripening stage is one of the most decisive factors in determining their quality. In this regard, the aim of this work is to develop a new method for non-destructive classification of the ripening state of Fuji apples using hyperspectral information in the visible and near-infrared (Vis/NIR) regions. Spectra of 172 apple samples in the range from 450 to 1000 nm were studied, which were selected from four different ripening stages. A convolutional neural network (CNN) model was proposed to perform the classification of the samples. The proposed method was compared with three alternative methods based on artificial neural networks (ANN), support vector machines (SVM), and
k
-nearest neighbors (KNN). The results revealed that the CNN method outperformed the alternative methods, achieving a correct classification rate (CCR) of 96.5%, compared with an average of 89.5%, 95.93%, and 91.68% for ANN, SVM, and KNN, respectively. These results will help in the development of a new device for fast and accurate estimation of the quality of apples.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11947-022-02880-7</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1374-8416</orcidid><orcidid>https://orcid.org/0000-0001-7259-5937</orcidid><orcidid>https://orcid.org/0000-0001-8122-5487</orcidid><orcidid>https://orcid.org/0000-0002-2480-4260</orcidid><orcidid>https://orcid.org/0000-0003-2521-4454</orcidid><orcidid>https://orcid.org/0000-0003-2439-5329</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1935-5130 |
ispartof | Food and bioprocess technology, 2022-10, Vol.15 (10), p.2226-2236 |
issn | 1935-5130 1935-5149 |
language | eng |
recordid | cdi_proquest_journals_2708875172 |
source | SpringerLink Journals |
subjects | Agriculture Apples Artificial neural networks Biotechnology Chemistry Chemistry and Materials Science Chemistry/Food Science Classification Estimation Food Science Fruits I.R. radiation Infrared spectra Infrared spectroscopy Near infrared radiation Neural networks Nondestructive testing Ripening Spectrum analysis Support vector machines |
title | Convolutional Neural Networks for Estimating the Ripening State of Fuji Apples Using Visible and Near-Infrared Spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A32%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convolutional%20Neural%20Networks%20for%20Estimating%20the%20Ripening%20State%20of%20Fuji%20Apples%20Using%20Visible%20and%20Near-Infrared%20Spectroscopy&rft.jtitle=Food%20and%20bioprocess%20technology&rft.au=Benmouna,%20Brahim&rft.date=2022-10-01&rft.volume=15&rft.issue=10&rft.spage=2226&rft.epage=2236&rft.pages=2226-2236&rft.issn=1935-5130&rft.eissn=1935-5149&rft_id=info:doi/10.1007/s11947-022-02880-7&rft_dat=%3Cproquest_cross%3E2708875172%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2708875172&rft_id=info:pmid/&rfr_iscdi=true |