Convolutional Neural Networks for Estimating the Ripening State of Fuji Apples Using Visible and Near-Infrared Spectroscopy

The quality of fresh apple fruits is a major concern for consumers and manufacturers. Classification of these fruits according to their ripening stage is one of the most decisive factors in determining their quality. In this regard, the aim of this work is to develop a new method for non-destructive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food and bioprocess technology 2022-10, Vol.15 (10), p.2226-2236
Hauptverfasser: Benmouna, Brahim, García-Mateos, Ginés, Sabzi, Sajad, Fernandez-Beltran, Ruben, Parras-Burgos, Dolores, Molina-Martínez, José Miguel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2236
container_issue 10
container_start_page 2226
container_title Food and bioprocess technology
container_volume 15
creator Benmouna, Brahim
García-Mateos, Ginés
Sabzi, Sajad
Fernandez-Beltran, Ruben
Parras-Burgos, Dolores
Molina-Martínez, José Miguel
description The quality of fresh apple fruits is a major concern for consumers and manufacturers. Classification of these fruits according to their ripening stage is one of the most decisive factors in determining their quality. In this regard, the aim of this work is to develop a new method for non-destructive classification of the ripening state of Fuji apples using hyperspectral information in the visible and near-infrared (Vis/NIR) regions. Spectra of 172 apple samples in the range from 450 to 1000 nm were studied, which were selected from four different ripening stages. A convolutional neural network (CNN) model was proposed to perform the classification of the samples. The proposed method was compared with three alternative methods based on artificial neural networks (ANN), support vector machines (SVM), and k -nearest neighbors (KNN). The results revealed that the CNN method outperformed the alternative methods, achieving a correct classification rate (CCR) of 96.5%, compared with an average of 89.5%, 95.93%, and 91.68% for ANN, SVM, and KNN, respectively. These results will help in the development of a new device for fast and accurate estimation of the quality of apples.
doi_str_mv 10.1007/s11947-022-02880-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2708875172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2708875172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-d008681d16cf204b01edd3f09e11a2a5497f6bb4a1e434e81553abda6a9f919f3</originalsourceid><addsrcrecordid>eNp9UEFOwzAQtBBIlMIHOFniHPDGTpwcq6qFShVIlHK1nMQuKSEOtgOq-Dxug-DGYbW72pnRziB0CeQaCOE3DiBnPCJxHCrLSMSP0AhymkQJsPz4d6bkFJ05tyUkJQzoCH1NTfthmt7XppUNvle9PTT_aeyrw9pYPHO-fpO-bjfYvyj8WHeq3S8rL73CRuN5v63xpOsa5fDa7U_PtauLRmHZVkFL2mjRaiutqvCqU6W3xpWm252jEy0bpy5--hit57On6V20fLhdTCfLqKQp9VFFSJZmUEFa6piwgoCqKqpJrgBkLBOWc50WBZOgGGUqgyShsqhkKnOdQ67pGF0Nup01771yXmxNb4NdJ2JOsownwOOAigdUGd5zVmnR2eDb7gQQsQ9ZDCGLELI4hCx4INGB5AK43Sj7J_0P6xsKloDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708875172</pqid></control><display><type>article</type><title>Convolutional Neural Networks for Estimating the Ripening State of Fuji Apples Using Visible and Near-Infrared Spectroscopy</title><source>SpringerLink Journals</source><creator>Benmouna, Brahim ; García-Mateos, Ginés ; Sabzi, Sajad ; Fernandez-Beltran, Ruben ; Parras-Burgos, Dolores ; Molina-Martínez, José Miguel</creator><creatorcontrib>Benmouna, Brahim ; García-Mateos, Ginés ; Sabzi, Sajad ; Fernandez-Beltran, Ruben ; Parras-Burgos, Dolores ; Molina-Martínez, José Miguel</creatorcontrib><description>The quality of fresh apple fruits is a major concern for consumers and manufacturers. Classification of these fruits according to their ripening stage is one of the most decisive factors in determining their quality. In this regard, the aim of this work is to develop a new method for non-destructive classification of the ripening state of Fuji apples using hyperspectral information in the visible and near-infrared (Vis/NIR) regions. Spectra of 172 apple samples in the range from 450 to 1000 nm were studied, which were selected from four different ripening stages. A convolutional neural network (CNN) model was proposed to perform the classification of the samples. The proposed method was compared with three alternative methods based on artificial neural networks (ANN), support vector machines (SVM), and k -nearest neighbors (KNN). The results revealed that the CNN method outperformed the alternative methods, achieving a correct classification rate (CCR) of 96.5%, compared with an average of 89.5%, 95.93%, and 91.68% for ANN, SVM, and KNN, respectively. These results will help in the development of a new device for fast and accurate estimation of the quality of apples.</description><identifier>ISSN: 1935-5130</identifier><identifier>EISSN: 1935-5149</identifier><identifier>DOI: 10.1007/s11947-022-02880-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Agriculture ; Apples ; Artificial neural networks ; Biotechnology ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Classification ; Estimation ; Food Science ; Fruits ; I.R. radiation ; Infrared spectra ; Infrared spectroscopy ; Near infrared radiation ; Neural networks ; Nondestructive testing ; Ripening ; Spectrum analysis ; Support vector machines</subject><ispartof>Food and bioprocess technology, 2022-10, Vol.15 (10), p.2226-2236</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-d008681d16cf204b01edd3f09e11a2a5497f6bb4a1e434e81553abda6a9f919f3</citedby><cites>FETCH-LOGICAL-c363t-d008681d16cf204b01edd3f09e11a2a5497f6bb4a1e434e81553abda6a9f919f3</cites><orcidid>0000-0003-1374-8416 ; 0000-0001-7259-5937 ; 0000-0001-8122-5487 ; 0000-0002-2480-4260 ; 0000-0003-2521-4454 ; 0000-0003-2439-5329</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11947-022-02880-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11947-022-02880-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Benmouna, Brahim</creatorcontrib><creatorcontrib>García-Mateos, Ginés</creatorcontrib><creatorcontrib>Sabzi, Sajad</creatorcontrib><creatorcontrib>Fernandez-Beltran, Ruben</creatorcontrib><creatorcontrib>Parras-Burgos, Dolores</creatorcontrib><creatorcontrib>Molina-Martínez, José Miguel</creatorcontrib><title>Convolutional Neural Networks for Estimating the Ripening State of Fuji Apples Using Visible and Near-Infrared Spectroscopy</title><title>Food and bioprocess technology</title><addtitle>Food Bioprocess Technol</addtitle><description>The quality of fresh apple fruits is a major concern for consumers and manufacturers. Classification of these fruits according to their ripening stage is one of the most decisive factors in determining their quality. In this regard, the aim of this work is to develop a new method for non-destructive classification of the ripening state of Fuji apples using hyperspectral information in the visible and near-infrared (Vis/NIR) regions. Spectra of 172 apple samples in the range from 450 to 1000 nm were studied, which were selected from four different ripening stages. A convolutional neural network (CNN) model was proposed to perform the classification of the samples. The proposed method was compared with three alternative methods based on artificial neural networks (ANN), support vector machines (SVM), and k -nearest neighbors (KNN). The results revealed that the CNN method outperformed the alternative methods, achieving a correct classification rate (CCR) of 96.5%, compared with an average of 89.5%, 95.93%, and 91.68% for ANN, SVM, and KNN, respectively. These results will help in the development of a new device for fast and accurate estimation of the quality of apples.</description><subject>Agriculture</subject><subject>Apples</subject><subject>Artificial neural networks</subject><subject>Biotechnology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Classification</subject><subject>Estimation</subject><subject>Food Science</subject><subject>Fruits</subject><subject>I.R. radiation</subject><subject>Infrared spectra</subject><subject>Infrared spectroscopy</subject><subject>Near infrared radiation</subject><subject>Neural networks</subject><subject>Nondestructive testing</subject><subject>Ripening</subject><subject>Spectrum analysis</subject><subject>Support vector machines</subject><issn>1935-5130</issn><issn>1935-5149</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9UEFOwzAQtBBIlMIHOFniHPDGTpwcq6qFShVIlHK1nMQuKSEOtgOq-Dxug-DGYbW72pnRziB0CeQaCOE3DiBnPCJxHCrLSMSP0AhymkQJsPz4d6bkFJ05tyUkJQzoCH1NTfthmt7XppUNvle9PTT_aeyrw9pYPHO-fpO-bjfYvyj8WHeq3S8rL73CRuN5v63xpOsa5fDa7U_PtauLRmHZVkFL2mjRaiutqvCqU6W3xpWm252jEy0bpy5--hit57On6V20fLhdTCfLqKQp9VFFSJZmUEFa6piwgoCqKqpJrgBkLBOWc50WBZOgGGUqgyShsqhkKnOdQ67pGF0Nup01771yXmxNb4NdJ2JOsownwOOAigdUGd5zVmnR2eDb7gQQsQ9ZDCGLELI4hCx4INGB5AK43Sj7J_0P6xsKloDw</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Benmouna, Brahim</creator><creator>García-Mateos, Ginés</creator><creator>Sabzi, Sajad</creator><creator>Fernandez-Beltran, Ruben</creator><creator>Parras-Burgos, Dolores</creator><creator>Molina-Martínez, José Miguel</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M0K</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-1374-8416</orcidid><orcidid>https://orcid.org/0000-0001-7259-5937</orcidid><orcidid>https://orcid.org/0000-0001-8122-5487</orcidid><orcidid>https://orcid.org/0000-0002-2480-4260</orcidid><orcidid>https://orcid.org/0000-0003-2521-4454</orcidid><orcidid>https://orcid.org/0000-0003-2439-5329</orcidid></search><sort><creationdate>20221001</creationdate><title>Convolutional Neural Networks for Estimating the Ripening State of Fuji Apples Using Visible and Near-Infrared Spectroscopy</title><author>Benmouna, Brahim ; García-Mateos, Ginés ; Sabzi, Sajad ; Fernandez-Beltran, Ruben ; Parras-Burgos, Dolores ; Molina-Martínez, José Miguel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-d008681d16cf204b01edd3f09e11a2a5497f6bb4a1e434e81553abda6a9f919f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agriculture</topic><topic>Apples</topic><topic>Artificial neural networks</topic><topic>Biotechnology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Classification</topic><topic>Estimation</topic><topic>Food Science</topic><topic>Fruits</topic><topic>I.R. radiation</topic><topic>Infrared spectra</topic><topic>Infrared spectroscopy</topic><topic>Near infrared radiation</topic><topic>Neural networks</topic><topic>Nondestructive testing</topic><topic>Ripening</topic><topic>Spectrum analysis</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benmouna, Brahim</creatorcontrib><creatorcontrib>García-Mateos, Ginés</creatorcontrib><creatorcontrib>Sabzi, Sajad</creatorcontrib><creatorcontrib>Fernandez-Beltran, Ruben</creatorcontrib><creatorcontrib>Parras-Burgos, Dolores</creatorcontrib><creatorcontrib>Molina-Martínez, José Miguel</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Agricultural Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Food and bioprocess technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benmouna, Brahim</au><au>García-Mateos, Ginés</au><au>Sabzi, Sajad</au><au>Fernandez-Beltran, Ruben</au><au>Parras-Burgos, Dolores</au><au>Molina-Martínez, José Miguel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convolutional Neural Networks for Estimating the Ripening State of Fuji Apples Using Visible and Near-Infrared Spectroscopy</atitle><jtitle>Food and bioprocess technology</jtitle><stitle>Food Bioprocess Technol</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>15</volume><issue>10</issue><spage>2226</spage><epage>2236</epage><pages>2226-2236</pages><issn>1935-5130</issn><eissn>1935-5149</eissn><abstract>The quality of fresh apple fruits is a major concern for consumers and manufacturers. Classification of these fruits according to their ripening stage is one of the most decisive factors in determining their quality. In this regard, the aim of this work is to develop a new method for non-destructive classification of the ripening state of Fuji apples using hyperspectral information in the visible and near-infrared (Vis/NIR) regions. Spectra of 172 apple samples in the range from 450 to 1000 nm were studied, which were selected from four different ripening stages. A convolutional neural network (CNN) model was proposed to perform the classification of the samples. The proposed method was compared with three alternative methods based on artificial neural networks (ANN), support vector machines (SVM), and k -nearest neighbors (KNN). The results revealed that the CNN method outperformed the alternative methods, achieving a correct classification rate (CCR) of 96.5%, compared with an average of 89.5%, 95.93%, and 91.68% for ANN, SVM, and KNN, respectively. These results will help in the development of a new device for fast and accurate estimation of the quality of apples.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11947-022-02880-7</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1374-8416</orcidid><orcidid>https://orcid.org/0000-0001-7259-5937</orcidid><orcidid>https://orcid.org/0000-0001-8122-5487</orcidid><orcidid>https://orcid.org/0000-0002-2480-4260</orcidid><orcidid>https://orcid.org/0000-0003-2521-4454</orcidid><orcidid>https://orcid.org/0000-0003-2439-5329</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1935-5130
ispartof Food and bioprocess technology, 2022-10, Vol.15 (10), p.2226-2236
issn 1935-5130
1935-5149
language eng
recordid cdi_proquest_journals_2708875172
source SpringerLink Journals
subjects Agriculture
Apples
Artificial neural networks
Biotechnology
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Classification
Estimation
Food Science
Fruits
I.R. radiation
Infrared spectra
Infrared spectroscopy
Near infrared radiation
Neural networks
Nondestructive testing
Ripening
Spectrum analysis
Support vector machines
title Convolutional Neural Networks for Estimating the Ripening State of Fuji Apples Using Visible and Near-Infrared Spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A32%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convolutional%20Neural%20Networks%20for%20Estimating%20the%20Ripening%20State%20of%20Fuji%20Apples%20Using%20Visible%20and%20Near-Infrared%20Spectroscopy&rft.jtitle=Food%20and%20bioprocess%20technology&rft.au=Benmouna,%20Brahim&rft.date=2022-10-01&rft.volume=15&rft.issue=10&rft.spage=2226&rft.epage=2236&rft.pages=2226-2236&rft.issn=1935-5130&rft.eissn=1935-5149&rft_id=info:doi/10.1007/s11947-022-02880-7&rft_dat=%3Cproquest_cross%3E2708875172%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2708875172&rft_id=info:pmid/&rfr_iscdi=true