Multi-Point Face Milling Tool Condition Monitoring Through Vibration Spectrogram and LSTM-Autoencoder
The intelligent factory defined by Industry 4.0 is established on intelligent machines, services, and production. To cope up with these requirements, topics such as Artificial Intelligence (AI), Evolutionary Computation (EC), Internet of Things (IoT), and Big Data are gaining a lot of attention in t...
Gespeichert in:
Veröffentlicht in: | International journal of performability engineering 2022-08, Vol.18 (8), p.570 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 570 |
container_title | International journal of performability engineering |
container_volume | 18 |
creator | H. Jatakar, Keshav Mulgund, Gopal D. Patange, Abhishek Deshmukh, B. B. S. Rambhad, Kishor |
description | The intelligent factory defined by Industry 4.0 is established on intelligent machines, services, and production. To cope up with these requirements, topics such as Artificial Intelligence (AI), Evolutionary Computation (EC), Internet of Things (IoT), and Big Data are gaining a lot of attention in the manufacturing sector. In spite of the use of optimized input parameters, owing to some unknown moments, a machining activity tends to produce tool wear, break, and chatter that affect tool life, resulting in poorer surface roughness. Thus, there is a need to adopt self-monitoring of tools so that the diagnosis can be done without any human intervention. As the 4th industrial revolution pervades production sector, the volume of manufacturing data created has approached big data proportions, and is very dynamic. In an attempt to compute such vast data, Deep Learning (DL) approach is being considered to be a potential tool. In this paper, investigation of unknown vibration moments leading to cutting tool faults is ventured upon through spectrogram and deep learning ensemble i.e. LSTM (Long-Short-Term Memory)-Auto encoder. |
doi_str_mv | 10.23940/ijpe.22.08.p5.570579 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2708785266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2708785266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c196t-327e71f4d1f48731f287b35e57784edfa09251e23510dea5c2ea609182ff31853</originalsourceid><addsrcrecordid>eNotkMFOwzAQRH0AiVL4BCRLnBPsdR07x6qigNQIpBaulptsWlepHRznwN9TWg6rOcxoRvsIeeAsB1HO2JM79JgD5EznvcylYlKVV2TCSiUyLri-IbfDcGCsAAV8QrAau-Syj-B8oktbI61c1zm_o5sQOroIvnHJBU-r4F0K8ezsYxh3e_rlttGezXWPdYphF-2RWt_Q1XpTZfMxBfR1aDDekevWdgPe_-uUfC6fN4vXbPX-8raYr7Kal0XKBChUvJ01p9NK8Ba02gqJUik9w6a1rATJEYTkrEEra0BbsJJraNvTa1JMyeOlt4_he8QhmUMYoz9NGlBMKy2hKE4peUnVMQxDxNb00R1t_DGcmTNF80fRABimTS_NhaL4BYgJaTI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708785266</pqid></control><display><type>article</type><title>Multi-Point Face Milling Tool Condition Monitoring Through Vibration Spectrogram and LSTM-Autoencoder</title><source>Alma/SFX Local Collection</source><creator>H. Jatakar, Keshav ; Mulgund, Gopal ; D. Patange, Abhishek ; Deshmukh, B. B. ; S. Rambhad, Kishor</creator><creatorcontrib>H. Jatakar, Keshav ; Mulgund, Gopal ; D. Patange, Abhishek ; Deshmukh, B. B. ; S. Rambhad, Kishor</creatorcontrib><description>The intelligent factory defined by Industry 4.0 is established on intelligent machines, services, and production. To cope up with these requirements, topics such as Artificial Intelligence (AI), Evolutionary Computation (EC), Internet of Things (IoT), and Big Data are gaining a lot of attention in the manufacturing sector. In spite of the use of optimized input parameters, owing to some unknown moments, a machining activity tends to produce tool wear, break, and chatter that affect tool life, resulting in poorer surface roughness. Thus, there is a need to adopt self-monitoring of tools so that the diagnosis can be done without any human intervention. As the 4th industrial revolution pervades production sector, the volume of manufacturing data created has approached big data proportions, and is very dynamic. In an attempt to compute such vast data, Deep Learning (DL) approach is being considered to be a potential tool. In this paper, investigation of unknown vibration moments leading to cutting tool faults is ventured upon through spectrogram and deep learning ensemble i.e. LSTM (Long-Short-Term Memory)-Auto encoder.</description><identifier>ISSN: 0973-1318</identifier><identifier>DOI: 10.23940/ijpe.22.08.p5.570579</identifier><language>eng</language><publisher>Jaipur: RAMS Consultants</publisher><subject>Artificial intelligence ; Big Data ; Coders ; Condition monitoring ; Cutting tools ; Deep learning ; Evolutionary computation ; Face milling ; Industrial applications ; Internet of Things ; Manufacturing ; Surface roughness ; Tool life ; Tool wear ; Vibration ; Vibration monitoring</subject><ispartof>International journal of performability engineering, 2022-08, Vol.18 (8), p.570</ispartof><rights>Copyright RAMS Consultants Aug 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c196t-327e71f4d1f48731f287b35e57784edfa09251e23510dea5c2ea609182ff31853</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27931,27932</link.rule.ids></links><search><creatorcontrib>H. Jatakar, Keshav</creatorcontrib><creatorcontrib>Mulgund, Gopal</creatorcontrib><creatorcontrib>D. Patange, Abhishek</creatorcontrib><creatorcontrib>Deshmukh, B. B.</creatorcontrib><creatorcontrib>S. Rambhad, Kishor</creatorcontrib><title>Multi-Point Face Milling Tool Condition Monitoring Through Vibration Spectrogram and LSTM-Autoencoder</title><title>International journal of performability engineering</title><description>The intelligent factory defined by Industry 4.0 is established on intelligent machines, services, and production. To cope up with these requirements, topics such as Artificial Intelligence (AI), Evolutionary Computation (EC), Internet of Things (IoT), and Big Data are gaining a lot of attention in the manufacturing sector. In spite of the use of optimized input parameters, owing to some unknown moments, a machining activity tends to produce tool wear, break, and chatter that affect tool life, resulting in poorer surface roughness. Thus, there is a need to adopt self-monitoring of tools so that the diagnosis can be done without any human intervention. As the 4th industrial revolution pervades production sector, the volume of manufacturing data created has approached big data proportions, and is very dynamic. In an attempt to compute such vast data, Deep Learning (DL) approach is being considered to be a potential tool. In this paper, investigation of unknown vibration moments leading to cutting tool faults is ventured upon through spectrogram and deep learning ensemble i.e. LSTM (Long-Short-Term Memory)-Auto encoder.</description><subject>Artificial intelligence</subject><subject>Big Data</subject><subject>Coders</subject><subject>Condition monitoring</subject><subject>Cutting tools</subject><subject>Deep learning</subject><subject>Evolutionary computation</subject><subject>Face milling</subject><subject>Industrial applications</subject><subject>Internet of Things</subject><subject>Manufacturing</subject><subject>Surface roughness</subject><subject>Tool life</subject><subject>Tool wear</subject><subject>Vibration</subject><subject>Vibration monitoring</subject><issn>0973-1318</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkMFOwzAQRH0AiVL4BCRLnBPsdR07x6qigNQIpBaulptsWlepHRznwN9TWg6rOcxoRvsIeeAsB1HO2JM79JgD5EznvcylYlKVV2TCSiUyLri-IbfDcGCsAAV8QrAau-Syj-B8oktbI61c1zm_o5sQOroIvnHJBU-r4F0K8ezsYxh3e_rlttGezXWPdYphF-2RWt_Q1XpTZfMxBfR1aDDekevWdgPe_-uUfC6fN4vXbPX-8raYr7Kal0XKBChUvJ01p9NK8Ba02gqJUik9w6a1rATJEYTkrEEra0BbsJJraNvTa1JMyeOlt4_he8QhmUMYoz9NGlBMKy2hKE4peUnVMQxDxNb00R1t_DGcmTNF80fRABimTS_NhaL4BYgJaTI</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>H. Jatakar, Keshav</creator><creator>Mulgund, Gopal</creator><creator>D. Patange, Abhishek</creator><creator>Deshmukh, B. B.</creator><creator>S. Rambhad, Kishor</creator><general>RAMS Consultants</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TA</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20220801</creationdate><title>Multi-Point Face Milling Tool Condition Monitoring Through Vibration Spectrogram and LSTM-Autoencoder</title><author>H. Jatakar, Keshav ; Mulgund, Gopal ; D. Patange, Abhishek ; Deshmukh, B. B. ; S. Rambhad, Kishor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c196t-327e71f4d1f48731f287b35e57784edfa09251e23510dea5c2ea609182ff31853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial intelligence</topic><topic>Big Data</topic><topic>Coders</topic><topic>Condition monitoring</topic><topic>Cutting tools</topic><topic>Deep learning</topic><topic>Evolutionary computation</topic><topic>Face milling</topic><topic>Industrial applications</topic><topic>Internet of Things</topic><topic>Manufacturing</topic><topic>Surface roughness</topic><topic>Tool life</topic><topic>Tool wear</topic><topic>Vibration</topic><topic>Vibration monitoring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>H. Jatakar, Keshav</creatorcontrib><creatorcontrib>Mulgund, Gopal</creatorcontrib><creatorcontrib>D. Patange, Abhishek</creatorcontrib><creatorcontrib>Deshmukh, B. B.</creatorcontrib><creatorcontrib>S. Rambhad, Kishor</creatorcontrib><collection>CrossRef</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of performability engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>H. Jatakar, Keshav</au><au>Mulgund, Gopal</au><au>D. Patange, Abhishek</au><au>Deshmukh, B. B.</au><au>S. Rambhad, Kishor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Point Face Milling Tool Condition Monitoring Through Vibration Spectrogram and LSTM-Autoencoder</atitle><jtitle>International journal of performability engineering</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>18</volume><issue>8</issue><spage>570</spage><pages>570-</pages><issn>0973-1318</issn><abstract>The intelligent factory defined by Industry 4.0 is established on intelligent machines, services, and production. To cope up with these requirements, topics such as Artificial Intelligence (AI), Evolutionary Computation (EC), Internet of Things (IoT), and Big Data are gaining a lot of attention in the manufacturing sector. In spite of the use of optimized input parameters, owing to some unknown moments, a machining activity tends to produce tool wear, break, and chatter that affect tool life, resulting in poorer surface roughness. Thus, there is a need to adopt self-monitoring of tools so that the diagnosis can be done without any human intervention. As the 4th industrial revolution pervades production sector, the volume of manufacturing data created has approached big data proportions, and is very dynamic. In an attempt to compute such vast data, Deep Learning (DL) approach is being considered to be a potential tool. In this paper, investigation of unknown vibration moments leading to cutting tool faults is ventured upon through spectrogram and deep learning ensemble i.e. LSTM (Long-Short-Term Memory)-Auto encoder.</abstract><cop>Jaipur</cop><pub>RAMS Consultants</pub><doi>10.23940/ijpe.22.08.p5.570579</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0973-1318 |
ispartof | International journal of performability engineering, 2022-08, Vol.18 (8), p.570 |
issn | 0973-1318 |
language | eng |
recordid | cdi_proquest_journals_2708785266 |
source | Alma/SFX Local Collection |
subjects | Artificial intelligence Big Data Coders Condition monitoring Cutting tools Deep learning Evolutionary computation Face milling Industrial applications Internet of Things Manufacturing Surface roughness Tool life Tool wear Vibration Vibration monitoring |
title | Multi-Point Face Milling Tool Condition Monitoring Through Vibration Spectrogram and LSTM-Autoencoder |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T23%3A33%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Point%20Face%20Milling%20Tool%20Condition%20Monitoring%20Through%20Vibration%20Spectrogram%20and%20LSTM-Autoencoder&rft.jtitle=International%20journal%20of%20performability%20engineering&rft.au=H.%20Jatakar,%20Keshav&rft.date=2022-08-01&rft.volume=18&rft.issue=8&rft.spage=570&rft.pages=570-&rft.issn=0973-1318&rft_id=info:doi/10.23940/ijpe.22.08.p5.570579&rft_dat=%3Cproquest_cross%3E2708785266%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2708785266&rft_id=info:pmid/&rfr_iscdi=true |