AI Acceleration Enabled by Nanoelectronic Memristive Devices

Here we present an analysis of the current state in the field of development of hardware accelerators of artificial intelligence (AI). Despite the fairly good progress made over the past decades, this area is experiencing a number of significant difficulties in its development. The solution to this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2022-08, Vol.2316 (1), p.12001
Hauptverfasser: Bordanov, I A, Zuev, A D, Danilin, S N, Khranilov, V P, Bukvarev, E A, Kim, S, Gryaznov, E G, Mikhaylov, A N, Shchanikov, S A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12001
container_title Journal of physics. Conference series
container_volume 2316
creator Bordanov, I A
Zuev, A D
Danilin, S N
Khranilov, V P
Bukvarev, E A
Kim, S
Gryaznov, E G
Mikhaylov, A N
Shchanikov, S A
description Here we present an analysis of the current state in the field of development of hardware accelerators of artificial intelligence (AI). Despite the fairly good progress made over the past decades, this area is experiencing a number of significant difficulties in its development. The solution to this problem lies in the application of new approaches to the organization of computing, in particular, computing in memory enabled by nanoelectronic memristive devices. We provide an overview of state-of-art systems, as well as our own version of the experimental concept of AI accelerators based on metal-oxide memristive devices and the massively parallel architecture for information processing.
doi_str_mv 10.1088/1742-6596/2316/1/012001
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2708771065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2708771065</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2741-7193f2cac2067a78e29a9439c473378934cdb26edbd9c581812360e3c7a819073</originalsourceid><addsrcrecordid>eNqFkFtLwzAUgIMoOKe_wYJvQm1O0jUJ-DLmvDEvoD6HNE0hY2tq0g32702pTATB83IOnO9c-BA6B3wFmPMMWE7SYiKKjFAoMsgwEIzhAI32ncN9zfkxOglhiTGNwUboevqQTLU2K-NVZ12TzBtVrkyVlLvkWTUuNnTnXWN18mTW3obObk1yY7ZWm3CKjmq1CubsO4_Rx-38fXafLl7uHmbTRaoJyyFlIGhNtNIEF0wxbohQIqdC5yz-wAXNdVWSwlRlJfSEAwdCC2yoZoqDwIyO0cWwt_Xuc2NCJ5du45t4UhKGOWOAi0mk2EBp70Lwppatt2vldxKw7FXJXoLshchelQQ5qIqTl8Okde3P6sfX2dtvULZVHWH6B_zfiS9vPXYO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708771065</pqid></control><display><type>article</type><title>AI Acceleration Enabled by Nanoelectronic Memristive Devices</title><source>Institute of Physics IOPscience extra</source><source>IOP Publishing Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Bordanov, I A ; Zuev, A D ; Danilin, S N ; Khranilov, V P ; Bukvarev, E A ; Kim, S ; Gryaznov, E G ; Mikhaylov, A N ; Shchanikov, S A</creator><creatorcontrib>Bordanov, I A ; Zuev, A D ; Danilin, S N ; Khranilov, V P ; Bukvarev, E A ; Kim, S ; Gryaznov, E G ; Mikhaylov, A N ; Shchanikov, S A</creatorcontrib><description>Here we present an analysis of the current state in the field of development of hardware accelerators of artificial intelligence (AI). Despite the fairly good progress made over the past decades, this area is experiencing a number of significant difficulties in its development. The solution to this problem lies in the application of new approaches to the organization of computing, in particular, computing in memory enabled by nanoelectronic memristive devices. We provide an overview of state-of-art systems, as well as our own version of the experimental concept of AI accelerators based on metal-oxide memristive devices and the massively parallel architecture for information processing.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/2316/1/012001</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Accelerators ; Artificial intelligence ; Computation ; Data processing ; Memory devices ; Metal oxides ; Physics ; State-of-the-art reviews</subject><ispartof>Journal of physics. Conference series, 2022-08, Vol.2316 (1), p.12001</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2741-7193f2cac2067a78e29a9439c473378934cdb26edbd9c581812360e3c7a819073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/2316/1/012001/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>Bordanov, I A</creatorcontrib><creatorcontrib>Zuev, A D</creatorcontrib><creatorcontrib>Danilin, S N</creatorcontrib><creatorcontrib>Khranilov, V P</creatorcontrib><creatorcontrib>Bukvarev, E A</creatorcontrib><creatorcontrib>Kim, S</creatorcontrib><creatorcontrib>Gryaznov, E G</creatorcontrib><creatorcontrib>Mikhaylov, A N</creatorcontrib><creatorcontrib>Shchanikov, S A</creatorcontrib><title>AI Acceleration Enabled by Nanoelectronic Memristive Devices</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>Here we present an analysis of the current state in the field of development of hardware accelerators of artificial intelligence (AI). Despite the fairly good progress made over the past decades, this area is experiencing a number of significant difficulties in its development. The solution to this problem lies in the application of new approaches to the organization of computing, in particular, computing in memory enabled by nanoelectronic memristive devices. We provide an overview of state-of-art systems, as well as our own version of the experimental concept of AI accelerators based on metal-oxide memristive devices and the massively parallel architecture for information processing.</description><subject>Accelerators</subject><subject>Artificial intelligence</subject><subject>Computation</subject><subject>Data processing</subject><subject>Memory devices</subject><subject>Metal oxides</subject><subject>Physics</subject><subject>State-of-the-art reviews</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkFtLwzAUgIMoOKe_wYJvQm1O0jUJ-DLmvDEvoD6HNE0hY2tq0g32702pTATB83IOnO9c-BA6B3wFmPMMWE7SYiKKjFAoMsgwEIzhAI32ncN9zfkxOglhiTGNwUboevqQTLU2K-NVZ12TzBtVrkyVlLvkWTUuNnTnXWN18mTW3obObk1yY7ZWm3CKjmq1CubsO4_Rx-38fXafLl7uHmbTRaoJyyFlIGhNtNIEF0wxbohQIqdC5yz-wAXNdVWSwlRlJfSEAwdCC2yoZoqDwIyO0cWwt_Xuc2NCJ5du45t4UhKGOWOAi0mk2EBp70Lwppatt2vldxKw7FXJXoLshchelQQ5qIqTl8Okde3P6sfX2dtvULZVHWH6B_zfiS9vPXYO</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Bordanov, I A</creator><creator>Zuev, A D</creator><creator>Danilin, S N</creator><creator>Khranilov, V P</creator><creator>Bukvarev, E A</creator><creator>Kim, S</creator><creator>Gryaznov, E G</creator><creator>Mikhaylov, A N</creator><creator>Shchanikov, S A</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20220801</creationdate><title>AI Acceleration Enabled by Nanoelectronic Memristive Devices</title><author>Bordanov, I A ; Zuev, A D ; Danilin, S N ; Khranilov, V P ; Bukvarev, E A ; Kim, S ; Gryaznov, E G ; Mikhaylov, A N ; Shchanikov, S A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2741-7193f2cac2067a78e29a9439c473378934cdb26edbd9c581812360e3c7a819073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accelerators</topic><topic>Artificial intelligence</topic><topic>Computation</topic><topic>Data processing</topic><topic>Memory devices</topic><topic>Metal oxides</topic><topic>Physics</topic><topic>State-of-the-art reviews</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bordanov, I A</creatorcontrib><creatorcontrib>Zuev, A D</creatorcontrib><creatorcontrib>Danilin, S N</creatorcontrib><creatorcontrib>Khranilov, V P</creatorcontrib><creatorcontrib>Bukvarev, E A</creatorcontrib><creatorcontrib>Kim, S</creatorcontrib><creatorcontrib>Gryaznov, E G</creatorcontrib><creatorcontrib>Mikhaylov, A N</creatorcontrib><creatorcontrib>Shchanikov, S A</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bordanov, I A</au><au>Zuev, A D</au><au>Danilin, S N</au><au>Khranilov, V P</au><au>Bukvarev, E A</au><au>Kim, S</au><au>Gryaznov, E G</au><au>Mikhaylov, A N</au><au>Shchanikov, S A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AI Acceleration Enabled by Nanoelectronic Memristive Devices</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2022-08-01</date><risdate>2022</risdate><volume>2316</volume><issue>1</issue><spage>12001</spage><pages>12001-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Here we present an analysis of the current state in the field of development of hardware accelerators of artificial intelligence (AI). Despite the fairly good progress made over the past decades, this area is experiencing a number of significant difficulties in its development. The solution to this problem lies in the application of new approaches to the organization of computing, in particular, computing in memory enabled by nanoelectronic memristive devices. We provide an overview of state-of-art systems, as well as our own version of the experimental concept of AI accelerators based on metal-oxide memristive devices and the massively parallel architecture for information processing.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/2316/1/012001</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2022-08, Vol.2316 (1), p.12001
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2708771065
source Institute of Physics IOPscience extra; IOP Publishing Free Content; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Accelerators
Artificial intelligence
Computation
Data processing
Memory devices
Metal oxides
Physics
State-of-the-art reviews
title AI Acceleration Enabled by Nanoelectronic Memristive Devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T10%3A55%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AI%20Acceleration%20Enabled%20by%20Nanoelectronic%20Memristive%20Devices&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Bordanov,%20I%20A&rft.date=2022-08-01&rft.volume=2316&rft.issue=1&rft.spage=12001&rft.pages=12001-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/2316/1/012001&rft_dat=%3Cproquest_iop_j%3E2708771065%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2708771065&rft_id=info:pmid/&rfr_iscdi=true