AI Acceleration Enabled by Nanoelectronic Memristive Devices
Here we present an analysis of the current state in the field of development of hardware accelerators of artificial intelligence (AI). Despite the fairly good progress made over the past decades, this area is experiencing a number of significant difficulties in its development. The solution to this...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2022-08, Vol.2316 (1), p.12001 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12001 |
container_title | Journal of physics. Conference series |
container_volume | 2316 |
creator | Bordanov, I A Zuev, A D Danilin, S N Khranilov, V P Bukvarev, E A Kim, S Gryaznov, E G Mikhaylov, A N Shchanikov, S A |
description | Here we present an analysis of the current state in the field of development of hardware accelerators of artificial intelligence (AI). Despite the fairly good progress made over the past decades, this area is experiencing a number of significant difficulties in its development. The solution to this problem lies in the application of new approaches to the organization of computing, in particular, computing in memory enabled by nanoelectronic memristive devices. We provide an overview of state-of-art systems, as well as our own version of the experimental concept of AI accelerators based on metal-oxide memristive devices and the massively parallel architecture for information processing. |
doi_str_mv | 10.1088/1742-6596/2316/1/012001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2708771065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2708771065</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2741-7193f2cac2067a78e29a9439c473378934cdb26edbd9c581812360e3c7a819073</originalsourceid><addsrcrecordid>eNqFkFtLwzAUgIMoOKe_wYJvQm1O0jUJ-DLmvDEvoD6HNE0hY2tq0g32702pTATB83IOnO9c-BA6B3wFmPMMWE7SYiKKjFAoMsgwEIzhAI32ncN9zfkxOglhiTGNwUboevqQTLU2K-NVZ12TzBtVrkyVlLvkWTUuNnTnXWN18mTW3obObk1yY7ZWm3CKjmq1CubsO4_Rx-38fXafLl7uHmbTRaoJyyFlIGhNtNIEF0wxbohQIqdC5yz-wAXNdVWSwlRlJfSEAwdCC2yoZoqDwIyO0cWwt_Xuc2NCJ5du45t4UhKGOWOAi0mk2EBp70Lwppatt2vldxKw7FXJXoLshchelQQ5qIqTl8Okde3P6sfX2dtvULZVHWH6B_zfiS9vPXYO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708771065</pqid></control><display><type>article</type><title>AI Acceleration Enabled by Nanoelectronic Memristive Devices</title><source>Institute of Physics IOPscience extra</source><source>IOP Publishing Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Bordanov, I A ; Zuev, A D ; Danilin, S N ; Khranilov, V P ; Bukvarev, E A ; Kim, S ; Gryaznov, E G ; Mikhaylov, A N ; Shchanikov, S A</creator><creatorcontrib>Bordanov, I A ; Zuev, A D ; Danilin, S N ; Khranilov, V P ; Bukvarev, E A ; Kim, S ; Gryaznov, E G ; Mikhaylov, A N ; Shchanikov, S A</creatorcontrib><description>Here we present an analysis of the current state in the field of development of hardware accelerators of artificial intelligence (AI). Despite the fairly good progress made over the past decades, this area is experiencing a number of significant difficulties in its development. The solution to this problem lies in the application of new approaches to the organization of computing, in particular, computing in memory enabled by nanoelectronic memristive devices. We provide an overview of state-of-art systems, as well as our own version of the experimental concept of AI accelerators based on metal-oxide memristive devices and the massively parallel architecture for information processing.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/2316/1/012001</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Accelerators ; Artificial intelligence ; Computation ; Data processing ; Memory devices ; Metal oxides ; Physics ; State-of-the-art reviews</subject><ispartof>Journal of physics. Conference series, 2022-08, Vol.2316 (1), p.12001</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2741-7193f2cac2067a78e29a9439c473378934cdb26edbd9c581812360e3c7a819073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/2316/1/012001/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>Bordanov, I A</creatorcontrib><creatorcontrib>Zuev, A D</creatorcontrib><creatorcontrib>Danilin, S N</creatorcontrib><creatorcontrib>Khranilov, V P</creatorcontrib><creatorcontrib>Bukvarev, E A</creatorcontrib><creatorcontrib>Kim, S</creatorcontrib><creatorcontrib>Gryaznov, E G</creatorcontrib><creatorcontrib>Mikhaylov, A N</creatorcontrib><creatorcontrib>Shchanikov, S A</creatorcontrib><title>AI Acceleration Enabled by Nanoelectronic Memristive Devices</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>Here we present an analysis of the current state in the field of development of hardware accelerators of artificial intelligence (AI). Despite the fairly good progress made over the past decades, this area is experiencing a number of significant difficulties in its development. The solution to this problem lies in the application of new approaches to the organization of computing, in particular, computing in memory enabled by nanoelectronic memristive devices. We provide an overview of state-of-art systems, as well as our own version of the experimental concept of AI accelerators based on metal-oxide memristive devices and the massively parallel architecture for information processing.</description><subject>Accelerators</subject><subject>Artificial intelligence</subject><subject>Computation</subject><subject>Data processing</subject><subject>Memory devices</subject><subject>Metal oxides</subject><subject>Physics</subject><subject>State-of-the-art reviews</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkFtLwzAUgIMoOKe_wYJvQm1O0jUJ-DLmvDEvoD6HNE0hY2tq0g32702pTATB83IOnO9c-BA6B3wFmPMMWE7SYiKKjFAoMsgwEIzhAI32ncN9zfkxOglhiTGNwUboevqQTLU2K-NVZ12TzBtVrkyVlLvkWTUuNnTnXWN18mTW3obObk1yY7ZWm3CKjmq1CubsO4_Rx-38fXafLl7uHmbTRaoJyyFlIGhNtNIEF0wxbohQIqdC5yz-wAXNdVWSwlRlJfSEAwdCC2yoZoqDwIyO0cWwt_Xuc2NCJ5du45t4UhKGOWOAi0mk2EBp70Lwppatt2vldxKw7FXJXoLshchelQQ5qIqTl8Okde3P6sfX2dtvULZVHWH6B_zfiS9vPXYO</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Bordanov, I A</creator><creator>Zuev, A D</creator><creator>Danilin, S N</creator><creator>Khranilov, V P</creator><creator>Bukvarev, E A</creator><creator>Kim, S</creator><creator>Gryaznov, E G</creator><creator>Mikhaylov, A N</creator><creator>Shchanikov, S A</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20220801</creationdate><title>AI Acceleration Enabled by Nanoelectronic Memristive Devices</title><author>Bordanov, I A ; Zuev, A D ; Danilin, S N ; Khranilov, V P ; Bukvarev, E A ; Kim, S ; Gryaznov, E G ; Mikhaylov, A N ; Shchanikov, S A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2741-7193f2cac2067a78e29a9439c473378934cdb26edbd9c581812360e3c7a819073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accelerators</topic><topic>Artificial intelligence</topic><topic>Computation</topic><topic>Data processing</topic><topic>Memory devices</topic><topic>Metal oxides</topic><topic>Physics</topic><topic>State-of-the-art reviews</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bordanov, I A</creatorcontrib><creatorcontrib>Zuev, A D</creatorcontrib><creatorcontrib>Danilin, S N</creatorcontrib><creatorcontrib>Khranilov, V P</creatorcontrib><creatorcontrib>Bukvarev, E A</creatorcontrib><creatorcontrib>Kim, S</creatorcontrib><creatorcontrib>Gryaznov, E G</creatorcontrib><creatorcontrib>Mikhaylov, A N</creatorcontrib><creatorcontrib>Shchanikov, S A</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bordanov, I A</au><au>Zuev, A D</au><au>Danilin, S N</au><au>Khranilov, V P</au><au>Bukvarev, E A</au><au>Kim, S</au><au>Gryaznov, E G</au><au>Mikhaylov, A N</au><au>Shchanikov, S A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AI Acceleration Enabled by Nanoelectronic Memristive Devices</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2022-08-01</date><risdate>2022</risdate><volume>2316</volume><issue>1</issue><spage>12001</spage><pages>12001-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Here we present an analysis of the current state in the field of development of hardware accelerators of artificial intelligence (AI). Despite the fairly good progress made over the past decades, this area is experiencing a number of significant difficulties in its development. The solution to this problem lies in the application of new approaches to the organization of computing, in particular, computing in memory enabled by nanoelectronic memristive devices. We provide an overview of state-of-art systems, as well as our own version of the experimental concept of AI accelerators based on metal-oxide memristive devices and the massively parallel architecture for information processing.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/2316/1/012001</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2022-08, Vol.2316 (1), p.12001 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2708771065 |
source | Institute of Physics IOPscience extra; IOP Publishing Free Content; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Accelerators Artificial intelligence Computation Data processing Memory devices Metal oxides Physics State-of-the-art reviews |
title | AI Acceleration Enabled by Nanoelectronic Memristive Devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T10%3A55%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AI%20Acceleration%20Enabled%20by%20Nanoelectronic%20Memristive%20Devices&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Bordanov,%20I%20A&rft.date=2022-08-01&rft.volume=2316&rft.issue=1&rft.spage=12001&rft.pages=12001-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/2316/1/012001&rft_dat=%3Cproquest_iop_j%3E2708771065%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2708771065&rft_id=info:pmid/&rfr_iscdi=true |