Transition Metals Embedded Siloxene as Single‐Atom Catalyst for Advanced Sulfur Host in Lithium–Sulfur Batteries: A Theoretical Study
The practical applications of lithium–sulfur batteries are presently hindered by the shuttle effect, sluggish reaction kinetics, and poor electronic conductivity of sulfur. Siloxene, a new 2D nanomaterial with three types of structures (Weiss, chain like, and Kautsky), is regarded to be a promising...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2022-09, Vol.12 (33), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 33 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 12 |
creator | Gong, Ning Hu, Xuewen Fang, Tiantian Yang, Changyu Xie, Tianzhu Peng, Wenchao Li, Yang Zhang, Fengbao Fan, Xiaobin |
description | The practical applications of lithium–sulfur batteries are presently hindered by the shuttle effect, sluggish reaction kinetics, and poor electronic conductivity of sulfur. Siloxene, a new 2D nanomaterial with three types of structures (Weiss, chain like, and Kautsky), is regarded to be a promising cathode‐supporting material for Li–S batteries. Herein, a series of 3d transition metal single‐atom embedded siloxenes (TM‐SA‐siloxenes) is designed and their potential in Li–S batteries is evaluated by first‐principles calculations. It is found that Weiss‐siloxene shows the best polysulfide anchoring ability and lowest Gibbs free energy for the sulfur reduction reaction (SRR). Among a series of TM‐SA‐siloxenes, Co‐SA‐siloxene is identified as the optimal candidate. It shows moderate adsorption energies for polysulfides and outstanding bifunctional electrocatalytic activity for SRR and Li2S decomposition, as well as excellent electronic conductivity. It is also revealed that suitable d and p band center positions, obvious hybridization between Co–3d and S–3p orbitals, and more charge obtained from adsorbed polysulfides, contribute to the high redox kinetics of Co‐SA‐siloxene for the catalyzing conversion of polysulfides. These interesting results provide valuable theoretical guidance for the study of siloxene‐based cathode host materials for Li–S batteries.
Transition metal single‐atom embedded siloxene (TM‐SA‐siloxene) not only adsorb polysulfides effectively, but TM single‐atom insertion also promotes the sulfur reduction reaction and Li2S decomposition in the discharging and charging progresses, respectively. Therefore, TM‐SA‐siloxene as sulfur host material can suppress the shuttle effect, facilitate polysulfide conversion, and improve the electronic conductivity of S cathodes in Li−S batteries. |
doi_str_mv | 10.1002/aenm.202201530 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2708706732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2708706732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3170-4fb9fe113cc0e60b8cae92c7623e575e661898be1d5bb241f47a2360246f40c93</originalsourceid><addsrcrecordid>eNqFkD9PwzAQxSMEElXpymyJueVsp07CFqryR2phoMyR41zAKImL7QDdWNmQ-Ib9JKRqVUZuuZPe792TXhCcUhhRAHYusalHDBgDOuZwEPSooOFQxCEc7m_OjoOBcy_QTZhQ4LwXfC2sbJz22jRkjl5WjkzrHIsCC_KgK_OBDRLpurt5qnD9-Z16U5OJ7MiV86Q0lqTFm2zUhm-rsrXkxnSCbshM-2fd1uvPn51wKb1Hq9FdkJQsntFY9FrJijz4tlidBEdlF4-D3e4Hj1fTxeRmOLu_vp2ks6HiNIJhWOZJiZRypQAF5LGSmDAVCcZxHI1RCBoncY60GOc5C2kZRpJxASwUZQgq4f3gbPt3ac1ri85nL6a1TReZsQjiCETEWUeNtpSyxjmLZba0upZ2lVHINo1nm8azfeOdIdka3nWFq3_oLJ3ezf-8v3Dnh4M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708706732</pqid></control><display><type>article</type><title>Transition Metals Embedded Siloxene as Single‐Atom Catalyst for Advanced Sulfur Host in Lithium–Sulfur Batteries: A Theoretical Study</title><source>Access via Wiley Online Library</source><creator>Gong, Ning ; Hu, Xuewen ; Fang, Tiantian ; Yang, Changyu ; Xie, Tianzhu ; Peng, Wenchao ; Li, Yang ; Zhang, Fengbao ; Fan, Xiaobin</creator><creatorcontrib>Gong, Ning ; Hu, Xuewen ; Fang, Tiantian ; Yang, Changyu ; Xie, Tianzhu ; Peng, Wenchao ; Li, Yang ; Zhang, Fengbao ; Fan, Xiaobin</creatorcontrib><description>The practical applications of lithium–sulfur batteries are presently hindered by the shuttle effect, sluggish reaction kinetics, and poor electronic conductivity of sulfur. Siloxene, a new 2D nanomaterial with three types of structures (Weiss, chain like, and Kautsky), is regarded to be a promising cathode‐supporting material for Li–S batteries. Herein, a series of 3d transition metal single‐atom embedded siloxenes (TM‐SA‐siloxenes) is designed and their potential in Li–S batteries is evaluated by first‐principles calculations. It is found that Weiss‐siloxene shows the best polysulfide anchoring ability and lowest Gibbs free energy for the sulfur reduction reaction (SRR). Among a series of TM‐SA‐siloxenes, Co‐SA‐siloxene is identified as the optimal candidate. It shows moderate adsorption energies for polysulfides and outstanding bifunctional electrocatalytic activity for SRR and Li2S decomposition, as well as excellent electronic conductivity. It is also revealed that suitable d and p band center positions, obvious hybridization between Co–3d and S–3p orbitals, and more charge obtained from adsorbed polysulfides, contribute to the high redox kinetics of Co‐SA‐siloxene for the catalyzing conversion of polysulfides. These interesting results provide valuable theoretical guidance for the study of siloxene‐based cathode host materials for Li–S batteries.
Transition metal single‐atom embedded siloxene (TM‐SA‐siloxene) not only adsorb polysulfides effectively, but TM single‐atom insertion also promotes the sulfur reduction reaction and Li2S decomposition in the discharging and charging progresses, respectively. Therefore, TM‐SA‐siloxene as sulfur host material can suppress the shuttle effect, facilitate polysulfide conversion, and improve the electronic conductivity of S cathodes in Li−S batteries.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202201530</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Cathodes ; Chemical reduction ; DFT calculations ; Gibbs free energy ; Lithium sulfur batteries ; Nanomaterials ; P band ; polysulfide redox reactions ; Polysulfides ; Reaction kinetics ; shuttle effect ; siloxene ; Single atom catalysts ; Transition metals</subject><ispartof>Advanced energy materials, 2022-09, Vol.12 (33), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3170-4fb9fe113cc0e60b8cae92c7623e575e661898be1d5bb241f47a2360246f40c93</citedby><cites>FETCH-LOGICAL-c3170-4fb9fe113cc0e60b8cae92c7623e575e661898be1d5bb241f47a2360246f40c93</cites><orcidid>0000-0002-9615-3866</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202201530$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202201530$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27933,27934,45583,45584</link.rule.ids></links><search><creatorcontrib>Gong, Ning</creatorcontrib><creatorcontrib>Hu, Xuewen</creatorcontrib><creatorcontrib>Fang, Tiantian</creatorcontrib><creatorcontrib>Yang, Changyu</creatorcontrib><creatorcontrib>Xie, Tianzhu</creatorcontrib><creatorcontrib>Peng, Wenchao</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Zhang, Fengbao</creatorcontrib><creatorcontrib>Fan, Xiaobin</creatorcontrib><title>Transition Metals Embedded Siloxene as Single‐Atom Catalyst for Advanced Sulfur Host in Lithium–Sulfur Batteries: A Theoretical Study</title><title>Advanced energy materials</title><description>The practical applications of lithium–sulfur batteries are presently hindered by the shuttle effect, sluggish reaction kinetics, and poor electronic conductivity of sulfur. Siloxene, a new 2D nanomaterial with three types of structures (Weiss, chain like, and Kautsky), is regarded to be a promising cathode‐supporting material for Li–S batteries. Herein, a series of 3d transition metal single‐atom embedded siloxenes (TM‐SA‐siloxenes) is designed and their potential in Li–S batteries is evaluated by first‐principles calculations. It is found that Weiss‐siloxene shows the best polysulfide anchoring ability and lowest Gibbs free energy for the sulfur reduction reaction (SRR). Among a series of TM‐SA‐siloxenes, Co‐SA‐siloxene is identified as the optimal candidate. It shows moderate adsorption energies for polysulfides and outstanding bifunctional electrocatalytic activity for SRR and Li2S decomposition, as well as excellent electronic conductivity. It is also revealed that suitable d and p band center positions, obvious hybridization between Co–3d and S–3p orbitals, and more charge obtained from adsorbed polysulfides, contribute to the high redox kinetics of Co‐SA‐siloxene for the catalyzing conversion of polysulfides. These interesting results provide valuable theoretical guidance for the study of siloxene‐based cathode host materials for Li–S batteries.
Transition metal single‐atom embedded siloxene (TM‐SA‐siloxene) not only adsorb polysulfides effectively, but TM single‐atom insertion also promotes the sulfur reduction reaction and Li2S decomposition in the discharging and charging progresses, respectively. Therefore, TM‐SA‐siloxene as sulfur host material can suppress the shuttle effect, facilitate polysulfide conversion, and improve the electronic conductivity of S cathodes in Li−S batteries.</description><subject>Cathodes</subject><subject>Chemical reduction</subject><subject>DFT calculations</subject><subject>Gibbs free energy</subject><subject>Lithium sulfur batteries</subject><subject>Nanomaterials</subject><subject>P band</subject><subject>polysulfide redox reactions</subject><subject>Polysulfides</subject><subject>Reaction kinetics</subject><subject>shuttle effect</subject><subject>siloxene</subject><subject>Single atom catalysts</subject><subject>Transition metals</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkD9PwzAQxSMEElXpymyJueVsp07CFqryR2phoMyR41zAKImL7QDdWNmQ-Ib9JKRqVUZuuZPe792TXhCcUhhRAHYusalHDBgDOuZwEPSooOFQxCEc7m_OjoOBcy_QTZhQ4LwXfC2sbJz22jRkjl5WjkzrHIsCC_KgK_OBDRLpurt5qnD9-Z16U5OJ7MiV86Q0lqTFm2zUhm-rsrXkxnSCbshM-2fd1uvPn51wKb1Hq9FdkJQsntFY9FrJijz4tlidBEdlF4-D3e4Hj1fTxeRmOLu_vp2ks6HiNIJhWOZJiZRypQAF5LGSmDAVCcZxHI1RCBoncY60GOc5C2kZRpJxASwUZQgq4f3gbPt3ac1ri85nL6a1TReZsQjiCETEWUeNtpSyxjmLZba0upZ2lVHINo1nm8azfeOdIdka3nWFq3_oLJ3ezf-8v3Dnh4M</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Gong, Ning</creator><creator>Hu, Xuewen</creator><creator>Fang, Tiantian</creator><creator>Yang, Changyu</creator><creator>Xie, Tianzhu</creator><creator>Peng, Wenchao</creator><creator>Li, Yang</creator><creator>Zhang, Fengbao</creator><creator>Fan, Xiaobin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9615-3866</orcidid></search><sort><creationdate>20220901</creationdate><title>Transition Metals Embedded Siloxene as Single‐Atom Catalyst for Advanced Sulfur Host in Lithium–Sulfur Batteries: A Theoretical Study</title><author>Gong, Ning ; Hu, Xuewen ; Fang, Tiantian ; Yang, Changyu ; Xie, Tianzhu ; Peng, Wenchao ; Li, Yang ; Zhang, Fengbao ; Fan, Xiaobin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3170-4fb9fe113cc0e60b8cae92c7623e575e661898be1d5bb241f47a2360246f40c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cathodes</topic><topic>Chemical reduction</topic><topic>DFT calculations</topic><topic>Gibbs free energy</topic><topic>Lithium sulfur batteries</topic><topic>Nanomaterials</topic><topic>P band</topic><topic>polysulfide redox reactions</topic><topic>Polysulfides</topic><topic>Reaction kinetics</topic><topic>shuttle effect</topic><topic>siloxene</topic><topic>Single atom catalysts</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Ning</creatorcontrib><creatorcontrib>Hu, Xuewen</creatorcontrib><creatorcontrib>Fang, Tiantian</creatorcontrib><creatorcontrib>Yang, Changyu</creatorcontrib><creatorcontrib>Xie, Tianzhu</creatorcontrib><creatorcontrib>Peng, Wenchao</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Zhang, Fengbao</creatorcontrib><creatorcontrib>Fan, Xiaobin</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Ning</au><au>Hu, Xuewen</au><au>Fang, Tiantian</au><au>Yang, Changyu</au><au>Xie, Tianzhu</au><au>Peng, Wenchao</au><au>Li, Yang</au><au>Zhang, Fengbao</au><au>Fan, Xiaobin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transition Metals Embedded Siloxene as Single‐Atom Catalyst for Advanced Sulfur Host in Lithium–Sulfur Batteries: A Theoretical Study</atitle><jtitle>Advanced energy materials</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>12</volume><issue>33</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>The practical applications of lithium–sulfur batteries are presently hindered by the shuttle effect, sluggish reaction kinetics, and poor electronic conductivity of sulfur. Siloxene, a new 2D nanomaterial with three types of structures (Weiss, chain like, and Kautsky), is regarded to be a promising cathode‐supporting material for Li–S batteries. Herein, a series of 3d transition metal single‐atom embedded siloxenes (TM‐SA‐siloxenes) is designed and their potential in Li–S batteries is evaluated by first‐principles calculations. It is found that Weiss‐siloxene shows the best polysulfide anchoring ability and lowest Gibbs free energy for the sulfur reduction reaction (SRR). Among a series of TM‐SA‐siloxenes, Co‐SA‐siloxene is identified as the optimal candidate. It shows moderate adsorption energies for polysulfides and outstanding bifunctional electrocatalytic activity for SRR and Li2S decomposition, as well as excellent electronic conductivity. It is also revealed that suitable d and p band center positions, obvious hybridization between Co–3d and S–3p orbitals, and more charge obtained from adsorbed polysulfides, contribute to the high redox kinetics of Co‐SA‐siloxene for the catalyzing conversion of polysulfides. These interesting results provide valuable theoretical guidance for the study of siloxene‐based cathode host materials for Li–S batteries.
Transition metal single‐atom embedded siloxene (TM‐SA‐siloxene) not only adsorb polysulfides effectively, but TM single‐atom insertion also promotes the sulfur reduction reaction and Li2S decomposition in the discharging and charging progresses, respectively. Therefore, TM‐SA‐siloxene as sulfur host material can suppress the shuttle effect, facilitate polysulfide conversion, and improve the electronic conductivity of S cathodes in Li−S batteries.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202201530</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9615-3866</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2022-09, Vol.12 (33), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_proquest_journals_2708706732 |
source | Access via Wiley Online Library |
subjects | Cathodes Chemical reduction DFT calculations Gibbs free energy Lithium sulfur batteries Nanomaterials P band polysulfide redox reactions Polysulfides Reaction kinetics shuttle effect siloxene Single atom catalysts Transition metals |
title | Transition Metals Embedded Siloxene as Single‐Atom Catalyst for Advanced Sulfur Host in Lithium–Sulfur Batteries: A Theoretical Study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T06%3A08%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transition%20Metals%20Embedded%20Siloxene%20as%20Single%E2%80%90Atom%20Catalyst%20for%20Advanced%20Sulfur%20Host%20in%20Lithium%E2%80%93Sulfur%20Batteries:%20A%20Theoretical%20Study&rft.jtitle=Advanced%20energy%20materials&rft.au=Gong,%20Ning&rft.date=2022-09-01&rft.volume=12&rft.issue=33&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202201530&rft_dat=%3Cproquest_cross%3E2708706732%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2708706732&rft_id=info:pmid/&rfr_iscdi=true |