The impact of cellulose nanocrystals on the rheology of sodium carboxymethyl cellulose and sodium alginate

At present, the physical properties of hydrocolloids limit their wide application in food industry. To improve the viscoelasticity of sodium carboxymethyl cellulose (CMC) and sodium alginate (SA), cellulose nanocrystals (CNCs) were added into CMC and SA solutions to regulate the non‐Newtonian flow b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2022-10, Vol.139 (38), p.n/a
Hauptverfasser: Cui, Shaoning, Cui, Congli, Ge, Shengju, Xie, Wei, Yu, Mengting, Li, Ying, Sun, Qingjie, Xiong, Liu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 38
container_start_page
container_title Journal of applied polymer science
container_volume 139
creator Cui, Shaoning
Cui, Congli
Ge, Shengju
Xie, Wei
Yu, Mengting
Li, Ying
Sun, Qingjie
Xiong, Liu
description At present, the physical properties of hydrocolloids limit their wide application in food industry. To improve the viscoelasticity of sodium carboxymethyl cellulose (CMC) and sodium alginate (SA), cellulose nanocrystals (CNCs) were added into CMC and SA solutions to regulate the non‐Newtonian flow behaviors of composite systems under different conditions. The rheological properties of CMC/CNCs or SA/CNCs composite systems were studied using steady rheological measurements, dynamic rheological measurements, and creep compliance experiments. It was found that the viscosities and elastic modulus of CMC were positively related to CNCs concentrations in acid, neutral or alkaline environments. When the CNCs content was higher than 5% at pH 9.45, the gelation of CMC was accelerated, and the gelation strength was increased. The damping factor of SA decreased with increasing calcium ions contents. When calcium ions content was higher than 0.07%, the damping factor of SA was less than 1, indicating that SA system achieved gel transformation. The effect of CNCs on the apparent viscosity, shear stress, and storage modulus of CMC was more obvious in comparison to that of SA. Overall, as a rheology modifier, CNCs can minimize the contents of food colloids in any functional fluid while maintaining the thickening rheology. The graphical
doi_str_mv 10.1002/app.52919
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2708691037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2708691037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2979-ec5d40adf5953c3330a614968b58b45052a0e3c8b9f213eeb92a68c296db21313</originalsourceid><addsrcrecordid>eNp10E1LwzAYB_AgCs7pwW8Q8OShW16aNjmO4RsM3GGeQ5qmW0fa1KRF--3NrIIXT4Env__zwB-AW4wWGCGyVF23YERgcQZmGIk8STPCz8Es_uGEC8EuwVUIR4QwZiibgePuYGDddEr30FVQG2sH64KBrWqd9mPolQ3QtbCPzh-Ms24_nmRwZT00UCtfuM-xMf1htH_iqi1_ibL7ulW9uQYXVVxmbn7eOXh7fNitn5PN69PLerVJNBG5SIxmZYpUWTHBqKaUIpXhVGS8YLxIGWJEIUM1L0RFMDWmEERlPGazsogDTOfgbtrbefc-mNDLoxt8G09KkiOeCYxoHtX9pLR3IXhTyc7XjfKjxEieqpSxSvldZbTLyX7U1oz_Q7nabqfEF5P-dpY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708691037</pqid></control><display><type>article</type><title>The impact of cellulose nanocrystals on the rheology of sodium carboxymethyl cellulose and sodium alginate</title><source>Wiley Journals</source><creator>Cui, Shaoning ; Cui, Congli ; Ge, Shengju ; Xie, Wei ; Yu, Mengting ; Li, Ying ; Sun, Qingjie ; Xiong, Liu</creator><creatorcontrib>Cui, Shaoning ; Cui, Congli ; Ge, Shengju ; Xie, Wei ; Yu, Mengting ; Li, Ying ; Sun, Qingjie ; Xiong, Liu</creatorcontrib><description>At present, the physical properties of hydrocolloids limit their wide application in food industry. To improve the viscoelasticity of sodium carboxymethyl cellulose (CMC) and sodium alginate (SA), cellulose nanocrystals (CNCs) were added into CMC and SA solutions to regulate the non‐Newtonian flow behaviors of composite systems under different conditions. The rheological properties of CMC/CNCs or SA/CNCs composite systems were studied using steady rheological measurements, dynamic rheological measurements, and creep compliance experiments. It was found that the viscosities and elastic modulus of CMC were positively related to CNCs concentrations in acid, neutral or alkaline environments. When the CNCs content was higher than 5% at pH 9.45, the gelation of CMC was accelerated, and the gelation strength was increased. The damping factor of SA decreased with increasing calcium ions contents. When calcium ions content was higher than 0.07%, the damping factor of SA was less than 1, indicating that SA system achieved gel transformation. The effect of CNCs on the apparent viscosity, shear stress, and storage modulus of CMC was more obvious in comparison to that of SA. Overall, as a rheology modifier, CNCs can minimize the contents of food colloids in any functional fluid while maintaining the thickening rheology. The graphical</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.52919</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Calcium ions ; Carboxymethyl cellulose ; Cellulose ; cellulose nanocrystals ; Creep (materials) ; Damping ; Gelation ; Materials science ; Modulus of elasticity ; Nanocrystals ; Physical properties ; Polymers ; Rheological properties ; Rheology ; Shear stress ; Sodium ; Sodium alginate ; Sodium carboxymethyl cellulose ; Storage modulus ; Thickening ; Viscoelasticity</subject><ispartof>Journal of applied polymer science, 2022-10, Vol.139 (38), p.n/a</ispartof><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2979-ec5d40adf5953c3330a614968b58b45052a0e3c8b9f213eeb92a68c296db21313</citedby><cites>FETCH-LOGICAL-c2979-ec5d40adf5953c3330a614968b58b45052a0e3c8b9f213eeb92a68c296db21313</cites><orcidid>0000-0002-7371-1052</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.52919$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.52919$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Cui, Shaoning</creatorcontrib><creatorcontrib>Cui, Congli</creatorcontrib><creatorcontrib>Ge, Shengju</creatorcontrib><creatorcontrib>Xie, Wei</creatorcontrib><creatorcontrib>Yu, Mengting</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Sun, Qingjie</creatorcontrib><creatorcontrib>Xiong, Liu</creatorcontrib><title>The impact of cellulose nanocrystals on the rheology of sodium carboxymethyl cellulose and sodium alginate</title><title>Journal of applied polymer science</title><description>At present, the physical properties of hydrocolloids limit their wide application in food industry. To improve the viscoelasticity of sodium carboxymethyl cellulose (CMC) and sodium alginate (SA), cellulose nanocrystals (CNCs) were added into CMC and SA solutions to regulate the non‐Newtonian flow behaviors of composite systems under different conditions. The rheological properties of CMC/CNCs or SA/CNCs composite systems were studied using steady rheological measurements, dynamic rheological measurements, and creep compliance experiments. It was found that the viscosities and elastic modulus of CMC were positively related to CNCs concentrations in acid, neutral or alkaline environments. When the CNCs content was higher than 5% at pH 9.45, the gelation of CMC was accelerated, and the gelation strength was increased. The damping factor of SA decreased with increasing calcium ions contents. When calcium ions content was higher than 0.07%, the damping factor of SA was less than 1, indicating that SA system achieved gel transformation. The effect of CNCs on the apparent viscosity, shear stress, and storage modulus of CMC was more obvious in comparison to that of SA. Overall, as a rheology modifier, CNCs can minimize the contents of food colloids in any functional fluid while maintaining the thickening rheology. The graphical</description><subject>Calcium ions</subject><subject>Carboxymethyl cellulose</subject><subject>Cellulose</subject><subject>cellulose nanocrystals</subject><subject>Creep (materials)</subject><subject>Damping</subject><subject>Gelation</subject><subject>Materials science</subject><subject>Modulus of elasticity</subject><subject>Nanocrystals</subject><subject>Physical properties</subject><subject>Polymers</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Shear stress</subject><subject>Sodium</subject><subject>Sodium alginate</subject><subject>Sodium carboxymethyl cellulose</subject><subject>Storage modulus</subject><subject>Thickening</subject><subject>Viscoelasticity</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp10E1LwzAYB_AgCs7pwW8Q8OShW16aNjmO4RsM3GGeQ5qmW0fa1KRF--3NrIIXT4Env__zwB-AW4wWGCGyVF23YERgcQZmGIk8STPCz8Es_uGEC8EuwVUIR4QwZiibgePuYGDddEr30FVQG2sH64KBrWqd9mPolQ3QtbCPzh-Ms24_nmRwZT00UCtfuM-xMf1htH_iqi1_ibL7ulW9uQYXVVxmbn7eOXh7fNitn5PN69PLerVJNBG5SIxmZYpUWTHBqKaUIpXhVGS8YLxIGWJEIUM1L0RFMDWmEERlPGazsogDTOfgbtrbefc-mNDLoxt8G09KkiOeCYxoHtX9pLR3IXhTyc7XjfKjxEieqpSxSvldZbTLyX7U1oz_Q7nabqfEF5P-dpY</recordid><startdate>20221010</startdate><enddate>20221010</enddate><creator>Cui, Shaoning</creator><creator>Cui, Congli</creator><creator>Ge, Shengju</creator><creator>Xie, Wei</creator><creator>Yu, Mengting</creator><creator>Li, Ying</creator><creator>Sun, Qingjie</creator><creator>Xiong, Liu</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-7371-1052</orcidid></search><sort><creationdate>20221010</creationdate><title>The impact of cellulose nanocrystals on the rheology of sodium carboxymethyl cellulose and sodium alginate</title><author>Cui, Shaoning ; Cui, Congli ; Ge, Shengju ; Xie, Wei ; Yu, Mengting ; Li, Ying ; Sun, Qingjie ; Xiong, Liu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2979-ec5d40adf5953c3330a614968b58b45052a0e3c8b9f213eeb92a68c296db21313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Calcium ions</topic><topic>Carboxymethyl cellulose</topic><topic>Cellulose</topic><topic>cellulose nanocrystals</topic><topic>Creep (materials)</topic><topic>Damping</topic><topic>Gelation</topic><topic>Materials science</topic><topic>Modulus of elasticity</topic><topic>Nanocrystals</topic><topic>Physical properties</topic><topic>Polymers</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Shear stress</topic><topic>Sodium</topic><topic>Sodium alginate</topic><topic>Sodium carboxymethyl cellulose</topic><topic>Storage modulus</topic><topic>Thickening</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Shaoning</creatorcontrib><creatorcontrib>Cui, Congli</creatorcontrib><creatorcontrib>Ge, Shengju</creatorcontrib><creatorcontrib>Xie, Wei</creatorcontrib><creatorcontrib>Yu, Mengting</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Sun, Qingjie</creatorcontrib><creatorcontrib>Xiong, Liu</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Shaoning</au><au>Cui, Congli</au><au>Ge, Shengju</au><au>Xie, Wei</au><au>Yu, Mengting</au><au>Li, Ying</au><au>Sun, Qingjie</au><au>Xiong, Liu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The impact of cellulose nanocrystals on the rheology of sodium carboxymethyl cellulose and sodium alginate</atitle><jtitle>Journal of applied polymer science</jtitle><date>2022-10-10</date><risdate>2022</risdate><volume>139</volume><issue>38</issue><epage>n/a</epage><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>At present, the physical properties of hydrocolloids limit their wide application in food industry. To improve the viscoelasticity of sodium carboxymethyl cellulose (CMC) and sodium alginate (SA), cellulose nanocrystals (CNCs) were added into CMC and SA solutions to regulate the non‐Newtonian flow behaviors of composite systems under different conditions. The rheological properties of CMC/CNCs or SA/CNCs composite systems were studied using steady rheological measurements, dynamic rheological measurements, and creep compliance experiments. It was found that the viscosities and elastic modulus of CMC were positively related to CNCs concentrations in acid, neutral or alkaline environments. When the CNCs content was higher than 5% at pH 9.45, the gelation of CMC was accelerated, and the gelation strength was increased. The damping factor of SA decreased with increasing calcium ions contents. When calcium ions content was higher than 0.07%, the damping factor of SA was less than 1, indicating that SA system achieved gel transformation. The effect of CNCs on the apparent viscosity, shear stress, and storage modulus of CMC was more obvious in comparison to that of SA. Overall, as a rheology modifier, CNCs can minimize the contents of food colloids in any functional fluid while maintaining the thickening rheology. The graphical</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/app.52919</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7371-1052</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 2022-10, Vol.139 (38), p.n/a
issn 0021-8995
1097-4628
language eng
recordid cdi_proquest_journals_2708691037
source Wiley Journals
subjects Calcium ions
Carboxymethyl cellulose
Cellulose
cellulose nanocrystals
Creep (materials)
Damping
Gelation
Materials science
Modulus of elasticity
Nanocrystals
Physical properties
Polymers
Rheological properties
Rheology
Shear stress
Sodium
Sodium alginate
Sodium carboxymethyl cellulose
Storage modulus
Thickening
Viscoelasticity
title The impact of cellulose nanocrystals on the rheology of sodium carboxymethyl cellulose and sodium alginate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T01%3A11%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20impact%20of%20cellulose%20nanocrystals%20on%20the%20rheology%20of%20sodium%20carboxymethyl%20cellulose%20and%20sodium%20alginate&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Cui,%20Shaoning&rft.date=2022-10-10&rft.volume=139&rft.issue=38&rft.epage=n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.52919&rft_dat=%3Cproquest_cross%3E2708691037%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2708691037&rft_id=info:pmid/&rfr_iscdi=true