On the (Im)Possibility of Estimating Various Notions of Differential Privacy
We analyze to what extent final users can infer information about the level of protection of their data when the data obfuscation mechanism is a priori unknown to them (the so-called ''black-box'' scenario). In particular, we delve into the investigation of two notions of local d...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-05 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Gorla, Daniele Jalouzot, Louis Granese, Federica Palamidessi, Catuscia Piantanida, Pablo |
description | We analyze to what extent final users can infer information about the level of protection of their data when the data obfuscation mechanism is a priori unknown to them (the so-called ''black-box'' scenario). In particular, we delve into the investigation of two notions of local differential privacy (LDP), namely {\epsilon}-LDP and Rényi LDP. On one hand, we prove that, without any assumption on the underlying distributions, it is not possible to have an algorithm able to infer the level of data protection with provable guarantees; this result also holds for the central versions of the two notions of DP considered. On the other hand, we demonstrate that, under reasonable assumptions (namely, Lipschitzness of the involved densities on a closed interval), such guarantees exist and can be achieved by a simple histogram-based estimator. We validate our results experimentally and we note that, on a particularly well-behaved distribution (namely, the Laplace noise), our method gives even better results than expected, in the sense that in practice the number of samples needed to achieve the desired confidence is smaller than the theoretical bound, and the estimation of {\epsilon} is more precise than predicted. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2708660815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2708660815</sourcerecordid><originalsourceid>FETCH-proquest_journals_27086608153</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtOwRcdCikif3ZtaIg2qG4liiJ3tImmpsKfXsVfACnM3xnRAIuRBzlK84nJERsGGM8zXiSiIAcTob6u6KLfbcsLSJcoAU_UKtpgR466cHc6Fk6sD3So_VgDX51A1orp4wH2dLSwUtehxkZa9miCn-dkvm2qNa76OHss1fo68b2znyo5hnL05TlcSL-u94H2j0k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708660815</pqid></control><display><type>article</type><title>On the (Im)Possibility of Estimating Various Notions of Differential Privacy</title><source>Free E- Journals</source><creator>Gorla, Daniele ; Jalouzot, Louis ; Granese, Federica ; Palamidessi, Catuscia ; Piantanida, Pablo</creator><creatorcontrib>Gorla, Daniele ; Jalouzot, Louis ; Granese, Federica ; Palamidessi, Catuscia ; Piantanida, Pablo</creatorcontrib><description>We analyze to what extent final users can infer information about the level of protection of their data when the data obfuscation mechanism is a priori unknown to them (the so-called ''black-box'' scenario). In particular, we delve into the investigation of two notions of local differential privacy (LDP), namely {\epsilon}-LDP and Rényi LDP. On one hand, we prove that, without any assumption on the underlying distributions, it is not possible to have an algorithm able to infer the level of data protection with provable guarantees; this result also holds for the central versions of the two notions of DP considered. On the other hand, we demonstrate that, under reasonable assumptions (namely, Lipschitzness of the involved densities on a closed interval), such guarantees exist and can be achieved by a simple histogram-based estimator. We validate our results experimentally and we note that, on a particularly well-behaved distribution (namely, the Laplace noise), our method gives even better results than expected, in the sense that in practice the number of samples needed to achieve the desired confidence is smaller than the theoretical bound, and the estimation of {\epsilon} is more precise than predicted.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Histograms ; Privacy ; Real numbers</subject><ispartof>arXiv.org, 2023-05</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Gorla, Daniele</creatorcontrib><creatorcontrib>Jalouzot, Louis</creatorcontrib><creatorcontrib>Granese, Federica</creatorcontrib><creatorcontrib>Palamidessi, Catuscia</creatorcontrib><creatorcontrib>Piantanida, Pablo</creatorcontrib><title>On the (Im)Possibility of Estimating Various Notions of Differential Privacy</title><title>arXiv.org</title><description>We analyze to what extent final users can infer information about the level of protection of their data when the data obfuscation mechanism is a priori unknown to them (the so-called ''black-box'' scenario). In particular, we delve into the investigation of two notions of local differential privacy (LDP), namely {\epsilon}-LDP and Rényi LDP. On one hand, we prove that, without any assumption on the underlying distributions, it is not possible to have an algorithm able to infer the level of data protection with provable guarantees; this result also holds for the central versions of the two notions of DP considered. On the other hand, we demonstrate that, under reasonable assumptions (namely, Lipschitzness of the involved densities on a closed interval), such guarantees exist and can be achieved by a simple histogram-based estimator. We validate our results experimentally and we note that, on a particularly well-behaved distribution (namely, the Laplace noise), our method gives even better results than expected, in the sense that in practice the number of samples needed to achieve the desired confidence is smaller than the theoretical bound, and the estimation of {\epsilon} is more precise than predicted.</description><subject>Algorithms</subject><subject>Histograms</subject><subject>Privacy</subject><subject>Real numbers</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtOwRcdCikif3ZtaIg2qG4liiJ3tImmpsKfXsVfACnM3xnRAIuRBzlK84nJERsGGM8zXiSiIAcTob6u6KLfbcsLSJcoAU_UKtpgR466cHc6Fk6sD3So_VgDX51A1orp4wH2dLSwUtehxkZa9miCn-dkvm2qNa76OHss1fo68b2znyo5hnL05TlcSL-u94H2j0k</recordid><startdate>20230523</startdate><enddate>20230523</enddate><creator>Gorla, Daniele</creator><creator>Jalouzot, Louis</creator><creator>Granese, Federica</creator><creator>Palamidessi, Catuscia</creator><creator>Piantanida, Pablo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230523</creationdate><title>On the (Im)Possibility of Estimating Various Notions of Differential Privacy</title><author>Gorla, Daniele ; Jalouzot, Louis ; Granese, Federica ; Palamidessi, Catuscia ; Piantanida, Pablo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27086608153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Histograms</topic><topic>Privacy</topic><topic>Real numbers</topic><toplevel>online_resources</toplevel><creatorcontrib>Gorla, Daniele</creatorcontrib><creatorcontrib>Jalouzot, Louis</creatorcontrib><creatorcontrib>Granese, Federica</creatorcontrib><creatorcontrib>Palamidessi, Catuscia</creatorcontrib><creatorcontrib>Piantanida, Pablo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gorla, Daniele</au><au>Jalouzot, Louis</au><au>Granese, Federica</au><au>Palamidessi, Catuscia</au><au>Piantanida, Pablo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On the (Im)Possibility of Estimating Various Notions of Differential Privacy</atitle><jtitle>arXiv.org</jtitle><date>2023-05-23</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We analyze to what extent final users can infer information about the level of protection of their data when the data obfuscation mechanism is a priori unknown to them (the so-called ''black-box'' scenario). In particular, we delve into the investigation of two notions of local differential privacy (LDP), namely {\epsilon}-LDP and Rényi LDP. On one hand, we prove that, without any assumption on the underlying distributions, it is not possible to have an algorithm able to infer the level of data protection with provable guarantees; this result also holds for the central versions of the two notions of DP considered. On the other hand, we demonstrate that, under reasonable assumptions (namely, Lipschitzness of the involved densities on a closed interval), such guarantees exist and can be achieved by a simple histogram-based estimator. We validate our results experimentally and we note that, on a particularly well-behaved distribution (namely, the Laplace noise), our method gives even better results than expected, in the sense that in practice the number of samples needed to achieve the desired confidence is smaller than the theoretical bound, and the estimation of {\epsilon} is more precise than predicted.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2708660815 |
source | Free E- Journals |
subjects | Algorithms Histograms Privacy Real numbers |
title | On the (Im)Possibility of Estimating Various Notions of Differential Privacy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T04%3A24%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20the%20(Im)Possibility%20of%20Estimating%20Various%20Notions%20of%20Differential%20Privacy&rft.jtitle=arXiv.org&rft.au=Gorla,%20Daniele&rft.date=2023-05-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2708660815%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2708660815&rft_id=info:pmid/&rfr_iscdi=true |