Revisited chaotic vibrations in dielectric elastomer systems with stiffening

Dielectric elastomer is a type of soft materials which can deform under applied voltage. Here, irregular vibrations in a circular dielectric elastomer membrane with stiffening under periodic forcing are studied. The stiffening phenomenon can induce fast increases in the potential energies near the l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2022-09, Vol.110 (1), p.55-67
Hauptverfasser: Zou, Hai-Lin, Deng, Zi-Chen, Zhou, Hongyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 67
container_issue 1
container_start_page 55
container_title Nonlinear dynamics
container_volume 110
creator Zou, Hai-Lin
Deng, Zi-Chen
Zhou, Hongyuan
description Dielectric elastomer is a type of soft materials which can deform under applied voltage. Here, irregular vibrations in a circular dielectric elastomer membrane with stiffening under periodic forcing are studied. The stiffening phenomenon can induce fast increases in the potential energies near the limiting stretches, which induces challenges to the numerical simulations. By comparing different numerical strategies, the adaptive step size method with allowable very small step sizes is used to simulate the system. For the system with or without damping, the existence of chaos is then verified through the positive maximum Lyapunov exponent and the fractal structures in the phase plane simultaneously. The local dynamic analysis shows the strong contribution of regions near the limiting stretches to the occurrence of chaos, revealing the important role of the stiffening. For the system with damping, the rich dynamical behaviors accompanying chaos such as the period-doubling route to chaos and the long chaotic transients also provide further consistent supports for the existence of chaos. For the system without damping, chaos region in a parameter plane is located by using different initial conditions, revealing the transitional behaviors from periodic states to chaos. Besides, the chaos is more easily to occur in the system without damping. Thus, the study here is useful to avoid or further handle such complex irregular dynamics.
doi_str_mv 10.1007/s11071-022-07617-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2708604369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2708604369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e5faccdf129cc762927af2dcaceaa513bc7f90ee0401aae3ea2ec784693548423</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKt_wFXAdfQlmZlMllL8goIgCt2FNPPSprQzNUmr_feOjuDO1Vvce-6DQ8glh2sOoG4S56A4AyEYqIor9nlERrxUkolKz47JCLQoGGiYnZKzlFYAIAXUIzJ9wX1IIWND3dJ2OTi6D_Noc-jaRENLm4BrdDn2Aa5tyt0GI02HlHGT6EfIS5py8B7b0C7OyYm364QXv3dM3u7vXiePbPr88DS5nTInuc4MS2-dazwX2jlVCS2U9aJx1qG1JZdzp7wGRCiAW4sSrUCn6qLSsizqQsgxuRp2t7F732HKZtXtYtu_NEJBXUEh--6YiKHlYpdSRG-2MWxsPBgO5tuaGayZ3pr5sWY-e0gOUOrL7QLj3_Q_1Be2_3KG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708604369</pqid></control><display><type>article</type><title>Revisited chaotic vibrations in dielectric elastomer systems with stiffening</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zou, Hai-Lin ; Deng, Zi-Chen ; Zhou, Hongyuan</creator><creatorcontrib>Zou, Hai-Lin ; Deng, Zi-Chen ; Zhou, Hongyuan</creatorcontrib><description>Dielectric elastomer is a type of soft materials which can deform under applied voltage. Here, irregular vibrations in a circular dielectric elastomer membrane with stiffening under periodic forcing are studied. The stiffening phenomenon can induce fast increases in the potential energies near the limiting stretches, which induces challenges to the numerical simulations. By comparing different numerical strategies, the adaptive step size method with allowable very small step sizes is used to simulate the system. For the system with or without damping, the existence of chaos is then verified through the positive maximum Lyapunov exponent and the fractal structures in the phase plane simultaneously. The local dynamic analysis shows the strong contribution of regions near the limiting stretches to the occurrence of chaos, revealing the important role of the stiffening. For the system with damping, the rich dynamical behaviors accompanying chaos such as the period-doubling route to chaos and the long chaotic transients also provide further consistent supports for the existence of chaos. For the system without damping, chaos region in a parameter plane is located by using different initial conditions, revealing the transitional behaviors from periodic states to chaos. Besides, the chaos is more easily to occur in the system without damping. Thus, the study here is useful to avoid or further handle such complex irregular dynamics.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-022-07617-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Accuracy ; Automotive Engineering ; Chaos theory ; Classical Mechanics ; Constraining ; Control ; Damping ; Deformation ; Dielectrics ; Dynamical Systems ; Elastomers ; Engineering ; Fractals ; Initial conditions ; Laboratories ; Liapunov exponents ; Mechanical Engineering ; Original Paper ; Simulation ; Stiffening ; Vibration</subject><ispartof>Nonlinear dynamics, 2022-09, Vol.110 (1), p.55-67</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e5faccdf129cc762927af2dcaceaa513bc7f90ee0401aae3ea2ec784693548423</citedby><cites>FETCH-LOGICAL-c319t-e5faccdf129cc762927af2dcaceaa513bc7f90ee0401aae3ea2ec784693548423</cites><orcidid>0000-0002-1797-1642</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-022-07617-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-022-07617-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Zou, Hai-Lin</creatorcontrib><creatorcontrib>Deng, Zi-Chen</creatorcontrib><creatorcontrib>Zhou, Hongyuan</creatorcontrib><title>Revisited chaotic vibrations in dielectric elastomer systems with stiffening</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>Dielectric elastomer is a type of soft materials which can deform under applied voltage. Here, irregular vibrations in a circular dielectric elastomer membrane with stiffening under periodic forcing are studied. The stiffening phenomenon can induce fast increases in the potential energies near the limiting stretches, which induces challenges to the numerical simulations. By comparing different numerical strategies, the adaptive step size method with allowable very small step sizes is used to simulate the system. For the system with or without damping, the existence of chaos is then verified through the positive maximum Lyapunov exponent and the fractal structures in the phase plane simultaneously. The local dynamic analysis shows the strong contribution of regions near the limiting stretches to the occurrence of chaos, revealing the important role of the stiffening. For the system with damping, the rich dynamical behaviors accompanying chaos such as the period-doubling route to chaos and the long chaotic transients also provide further consistent supports for the existence of chaos. For the system without damping, chaos region in a parameter plane is located by using different initial conditions, revealing the transitional behaviors from periodic states to chaos. Besides, the chaos is more easily to occur in the system without damping. Thus, the study here is useful to avoid or further handle such complex irregular dynamics.</description><subject>Accuracy</subject><subject>Automotive Engineering</subject><subject>Chaos theory</subject><subject>Classical Mechanics</subject><subject>Constraining</subject><subject>Control</subject><subject>Damping</subject><subject>Deformation</subject><subject>Dielectrics</subject><subject>Dynamical Systems</subject><subject>Elastomers</subject><subject>Engineering</subject><subject>Fractals</subject><subject>Initial conditions</subject><subject>Laboratories</subject><subject>Liapunov exponents</subject><subject>Mechanical Engineering</subject><subject>Original Paper</subject><subject>Simulation</subject><subject>Stiffening</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LAzEURYMoWKt_wFXAdfQlmZlMllL8goIgCt2FNPPSprQzNUmr_feOjuDO1Vvce-6DQ8glh2sOoG4S56A4AyEYqIor9nlERrxUkolKz47JCLQoGGiYnZKzlFYAIAXUIzJ9wX1IIWND3dJ2OTi6D_Noc-jaRENLm4BrdDn2Aa5tyt0GI02HlHGT6EfIS5py8B7b0C7OyYm364QXv3dM3u7vXiePbPr88DS5nTInuc4MS2-dazwX2jlVCS2U9aJx1qG1JZdzp7wGRCiAW4sSrUCn6qLSsizqQsgxuRp2t7F732HKZtXtYtu_NEJBXUEh--6YiKHlYpdSRG-2MWxsPBgO5tuaGayZ3pr5sWY-e0gOUOrL7QLj3_Q_1Be2_3KG</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Zou, Hai-Lin</creator><creator>Deng, Zi-Chen</creator><creator>Zhou, Hongyuan</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-1797-1642</orcidid></search><sort><creationdate>20220901</creationdate><title>Revisited chaotic vibrations in dielectric elastomer systems with stiffening</title><author>Zou, Hai-Lin ; Deng, Zi-Chen ; Zhou, Hongyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e5faccdf129cc762927af2dcaceaa513bc7f90ee0401aae3ea2ec784693548423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Automotive Engineering</topic><topic>Chaos theory</topic><topic>Classical Mechanics</topic><topic>Constraining</topic><topic>Control</topic><topic>Damping</topic><topic>Deformation</topic><topic>Dielectrics</topic><topic>Dynamical Systems</topic><topic>Elastomers</topic><topic>Engineering</topic><topic>Fractals</topic><topic>Initial conditions</topic><topic>Laboratories</topic><topic>Liapunov exponents</topic><topic>Mechanical Engineering</topic><topic>Original Paper</topic><topic>Simulation</topic><topic>Stiffening</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Hai-Lin</creatorcontrib><creatorcontrib>Deng, Zi-Chen</creatorcontrib><creatorcontrib>Zhou, Hongyuan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Hai-Lin</au><au>Deng, Zi-Chen</au><au>Zhou, Hongyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revisited chaotic vibrations in dielectric elastomer systems with stiffening</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>110</volume><issue>1</issue><spage>55</spage><epage>67</epage><pages>55-67</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>Dielectric elastomer is a type of soft materials which can deform under applied voltage. Here, irregular vibrations in a circular dielectric elastomer membrane with stiffening under periodic forcing are studied. The stiffening phenomenon can induce fast increases in the potential energies near the limiting stretches, which induces challenges to the numerical simulations. By comparing different numerical strategies, the adaptive step size method with allowable very small step sizes is used to simulate the system. For the system with or without damping, the existence of chaos is then verified through the positive maximum Lyapunov exponent and the fractal structures in the phase plane simultaneously. The local dynamic analysis shows the strong contribution of regions near the limiting stretches to the occurrence of chaos, revealing the important role of the stiffening. For the system with damping, the rich dynamical behaviors accompanying chaos such as the period-doubling route to chaos and the long chaotic transients also provide further consistent supports for the existence of chaos. For the system without damping, chaos region in a parameter plane is located by using different initial conditions, revealing the transitional behaviors from periodic states to chaos. Besides, the chaos is more easily to occur in the system without damping. Thus, the study here is useful to avoid or further handle such complex irregular dynamics.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-022-07617-x</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1797-1642</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2022-09, Vol.110 (1), p.55-67
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_2708604369
source SpringerLink Journals - AutoHoldings
subjects Accuracy
Automotive Engineering
Chaos theory
Classical Mechanics
Constraining
Control
Damping
Deformation
Dielectrics
Dynamical Systems
Elastomers
Engineering
Fractals
Initial conditions
Laboratories
Liapunov exponents
Mechanical Engineering
Original Paper
Simulation
Stiffening
Vibration
title Revisited chaotic vibrations in dielectric elastomer systems with stiffening
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A48%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revisited%20chaotic%20vibrations%20in%20dielectric%20elastomer%20systems%20with%20stiffening&rft.jtitle=Nonlinear%20dynamics&rft.au=Zou,%20Hai-Lin&rft.date=2022-09-01&rft.volume=110&rft.issue=1&rft.spage=55&rft.epage=67&rft.pages=55-67&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-022-07617-x&rft_dat=%3Cproquest_cross%3E2708604369%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2708604369&rft_id=info:pmid/&rfr_iscdi=true