Revisited chaotic vibrations in dielectric elastomer systems with stiffening
Dielectric elastomer is a type of soft materials which can deform under applied voltage. Here, irregular vibrations in a circular dielectric elastomer membrane with stiffening under periodic forcing are studied. The stiffening phenomenon can induce fast increases in the potential energies near the l...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2022-09, Vol.110 (1), p.55-67 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 67 |
---|---|
container_issue | 1 |
container_start_page | 55 |
container_title | Nonlinear dynamics |
container_volume | 110 |
creator | Zou, Hai-Lin Deng, Zi-Chen Zhou, Hongyuan |
description | Dielectric elastomer is a type of soft materials which can deform under applied voltage. Here, irregular vibrations in a circular dielectric elastomer membrane with stiffening under periodic forcing are studied. The stiffening phenomenon can induce fast increases in the potential energies near the limiting stretches, which induces challenges to the numerical simulations. By comparing different numerical strategies, the adaptive step size method with allowable very small step sizes is used to simulate the system. For the system with or without damping, the existence of chaos is then verified through the positive maximum Lyapunov exponent and the fractal structures in the phase plane simultaneously. The local dynamic analysis shows the strong contribution of regions near the limiting stretches to the occurrence of chaos, revealing the important role of the stiffening. For the system with damping, the rich dynamical behaviors accompanying chaos such as the period-doubling route to chaos and the long chaotic transients also provide further consistent supports for the existence of chaos. For the system without damping, chaos region in a parameter plane is located by using different initial conditions, revealing the transitional behaviors from periodic states to chaos. Besides, the chaos is more easily to occur in the system without damping. Thus, the study here is useful to avoid or further handle such complex irregular dynamics. |
doi_str_mv | 10.1007/s11071-022-07617-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2708604369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2708604369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e5faccdf129cc762927af2dcaceaa513bc7f90ee0401aae3ea2ec784693548423</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKt_wFXAdfQlmZlMllL8goIgCt2FNPPSprQzNUmr_feOjuDO1Vvce-6DQ8glh2sOoG4S56A4AyEYqIor9nlERrxUkolKz47JCLQoGGiYnZKzlFYAIAXUIzJ9wX1IIWND3dJ2OTi6D_Noc-jaRENLm4BrdDn2Aa5tyt0GI02HlHGT6EfIS5py8B7b0C7OyYm364QXv3dM3u7vXiePbPr88DS5nTInuc4MS2-dazwX2jlVCS2U9aJx1qG1JZdzp7wGRCiAW4sSrUCn6qLSsizqQsgxuRp2t7F732HKZtXtYtu_NEJBXUEh--6YiKHlYpdSRG-2MWxsPBgO5tuaGayZ3pr5sWY-e0gOUOrL7QLj3_Q_1Be2_3KG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708604369</pqid></control><display><type>article</type><title>Revisited chaotic vibrations in dielectric elastomer systems with stiffening</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zou, Hai-Lin ; Deng, Zi-Chen ; Zhou, Hongyuan</creator><creatorcontrib>Zou, Hai-Lin ; Deng, Zi-Chen ; Zhou, Hongyuan</creatorcontrib><description>Dielectric elastomer is a type of soft materials which can deform under applied voltage. Here, irregular vibrations in a circular dielectric elastomer membrane with stiffening under periodic forcing are studied. The stiffening phenomenon can induce fast increases in the potential energies near the limiting stretches, which induces challenges to the numerical simulations. By comparing different numerical strategies, the adaptive step size method with allowable very small step sizes is used to simulate the system. For the system with or without damping, the existence of chaos is then verified through the positive maximum Lyapunov exponent and the fractal structures in the phase plane simultaneously. The local dynamic analysis shows the strong contribution of regions near the limiting stretches to the occurrence of chaos, revealing the important role of the stiffening. For the system with damping, the rich dynamical behaviors accompanying chaos such as the period-doubling route to chaos and the long chaotic transients also provide further consistent supports for the existence of chaos. For the system without damping, chaos region in a parameter plane is located by using different initial conditions, revealing the transitional behaviors from periodic states to chaos. Besides, the chaos is more easily to occur in the system without damping. Thus, the study here is useful to avoid or further handle such complex irregular dynamics.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-022-07617-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Accuracy ; Automotive Engineering ; Chaos theory ; Classical Mechanics ; Constraining ; Control ; Damping ; Deformation ; Dielectrics ; Dynamical Systems ; Elastomers ; Engineering ; Fractals ; Initial conditions ; Laboratories ; Liapunov exponents ; Mechanical Engineering ; Original Paper ; Simulation ; Stiffening ; Vibration</subject><ispartof>Nonlinear dynamics, 2022-09, Vol.110 (1), p.55-67</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e5faccdf129cc762927af2dcaceaa513bc7f90ee0401aae3ea2ec784693548423</citedby><cites>FETCH-LOGICAL-c319t-e5faccdf129cc762927af2dcaceaa513bc7f90ee0401aae3ea2ec784693548423</cites><orcidid>0000-0002-1797-1642</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-022-07617-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-022-07617-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Zou, Hai-Lin</creatorcontrib><creatorcontrib>Deng, Zi-Chen</creatorcontrib><creatorcontrib>Zhou, Hongyuan</creatorcontrib><title>Revisited chaotic vibrations in dielectric elastomer systems with stiffening</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>Dielectric elastomer is a type of soft materials which can deform under applied voltage. Here, irregular vibrations in a circular dielectric elastomer membrane with stiffening under periodic forcing are studied. The stiffening phenomenon can induce fast increases in the potential energies near the limiting stretches, which induces challenges to the numerical simulations. By comparing different numerical strategies, the adaptive step size method with allowable very small step sizes is used to simulate the system. For the system with or without damping, the existence of chaos is then verified through the positive maximum Lyapunov exponent and the fractal structures in the phase plane simultaneously. The local dynamic analysis shows the strong contribution of regions near the limiting stretches to the occurrence of chaos, revealing the important role of the stiffening. For the system with damping, the rich dynamical behaviors accompanying chaos such as the period-doubling route to chaos and the long chaotic transients also provide further consistent supports for the existence of chaos. For the system without damping, chaos region in a parameter plane is located by using different initial conditions, revealing the transitional behaviors from periodic states to chaos. Besides, the chaos is more easily to occur in the system without damping. Thus, the study here is useful to avoid or further handle such complex irregular dynamics.</description><subject>Accuracy</subject><subject>Automotive Engineering</subject><subject>Chaos theory</subject><subject>Classical Mechanics</subject><subject>Constraining</subject><subject>Control</subject><subject>Damping</subject><subject>Deformation</subject><subject>Dielectrics</subject><subject>Dynamical Systems</subject><subject>Elastomers</subject><subject>Engineering</subject><subject>Fractals</subject><subject>Initial conditions</subject><subject>Laboratories</subject><subject>Liapunov exponents</subject><subject>Mechanical Engineering</subject><subject>Original Paper</subject><subject>Simulation</subject><subject>Stiffening</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LAzEURYMoWKt_wFXAdfQlmZlMllL8goIgCt2FNPPSprQzNUmr_feOjuDO1Vvce-6DQ8glh2sOoG4S56A4AyEYqIor9nlERrxUkolKz47JCLQoGGiYnZKzlFYAIAXUIzJ9wX1IIWND3dJ2OTi6D_Noc-jaRENLm4BrdDn2Aa5tyt0GI02HlHGT6EfIS5py8B7b0C7OyYm364QXv3dM3u7vXiePbPr88DS5nTInuc4MS2-dazwX2jlVCS2U9aJx1qG1JZdzp7wGRCiAW4sSrUCn6qLSsizqQsgxuRp2t7F732HKZtXtYtu_NEJBXUEh--6YiKHlYpdSRG-2MWxsPBgO5tuaGayZ3pr5sWY-e0gOUOrL7QLj3_Q_1Be2_3KG</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Zou, Hai-Lin</creator><creator>Deng, Zi-Chen</creator><creator>Zhou, Hongyuan</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-1797-1642</orcidid></search><sort><creationdate>20220901</creationdate><title>Revisited chaotic vibrations in dielectric elastomer systems with stiffening</title><author>Zou, Hai-Lin ; Deng, Zi-Chen ; Zhou, Hongyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e5faccdf129cc762927af2dcaceaa513bc7f90ee0401aae3ea2ec784693548423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Automotive Engineering</topic><topic>Chaos theory</topic><topic>Classical Mechanics</topic><topic>Constraining</topic><topic>Control</topic><topic>Damping</topic><topic>Deformation</topic><topic>Dielectrics</topic><topic>Dynamical Systems</topic><topic>Elastomers</topic><topic>Engineering</topic><topic>Fractals</topic><topic>Initial conditions</topic><topic>Laboratories</topic><topic>Liapunov exponents</topic><topic>Mechanical Engineering</topic><topic>Original Paper</topic><topic>Simulation</topic><topic>Stiffening</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Hai-Lin</creatorcontrib><creatorcontrib>Deng, Zi-Chen</creatorcontrib><creatorcontrib>Zhou, Hongyuan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Hai-Lin</au><au>Deng, Zi-Chen</au><au>Zhou, Hongyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revisited chaotic vibrations in dielectric elastomer systems with stiffening</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>110</volume><issue>1</issue><spage>55</spage><epage>67</epage><pages>55-67</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>Dielectric elastomer is a type of soft materials which can deform under applied voltage. Here, irregular vibrations in a circular dielectric elastomer membrane with stiffening under periodic forcing are studied. The stiffening phenomenon can induce fast increases in the potential energies near the limiting stretches, which induces challenges to the numerical simulations. By comparing different numerical strategies, the adaptive step size method with allowable very small step sizes is used to simulate the system. For the system with or without damping, the existence of chaos is then verified through the positive maximum Lyapunov exponent and the fractal structures in the phase plane simultaneously. The local dynamic analysis shows the strong contribution of regions near the limiting stretches to the occurrence of chaos, revealing the important role of the stiffening. For the system with damping, the rich dynamical behaviors accompanying chaos such as the period-doubling route to chaos and the long chaotic transients also provide further consistent supports for the existence of chaos. For the system without damping, chaos region in a parameter plane is located by using different initial conditions, revealing the transitional behaviors from periodic states to chaos. Besides, the chaos is more easily to occur in the system without damping. Thus, the study here is useful to avoid or further handle such complex irregular dynamics.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-022-07617-x</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1797-1642</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2022-09, Vol.110 (1), p.55-67 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_2708604369 |
source | SpringerLink Journals - AutoHoldings |
subjects | Accuracy Automotive Engineering Chaos theory Classical Mechanics Constraining Control Damping Deformation Dielectrics Dynamical Systems Elastomers Engineering Fractals Initial conditions Laboratories Liapunov exponents Mechanical Engineering Original Paper Simulation Stiffening Vibration |
title | Revisited chaotic vibrations in dielectric elastomer systems with stiffening |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A48%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revisited%20chaotic%20vibrations%20in%20dielectric%20elastomer%20systems%20with%20stiffening&rft.jtitle=Nonlinear%20dynamics&rft.au=Zou,%20Hai-Lin&rft.date=2022-09-01&rft.volume=110&rft.issue=1&rft.spage=55&rft.epage=67&rft.pages=55-67&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-022-07617-x&rft_dat=%3Cproquest_cross%3E2708604369%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2708604369&rft_id=info:pmid/&rfr_iscdi=true |