A survey on sentiment analysis methods, applications, and challenges
The rapid growth of Internet-based applications, such as social media platforms and blogs, has resulted in comments and reviews concerning day-to-day activities. Sentiment analysis is the process of gathering and analyzing people’s opinions, thoughts, and impressions regarding various topics, produc...
Gespeichert in:
Veröffentlicht in: | The Artificial intelligence review 2022-10, Vol.55 (7), p.5731-5780 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5780 |
---|---|
container_issue | 7 |
container_start_page | 5731 |
container_title | The Artificial intelligence review |
container_volume | 55 |
creator | Wankhade, Mayur Rao, Annavarapu Chandra Sekhara Kulkarni, Chaitanya |
description | The rapid growth of Internet-based applications, such as social media platforms and blogs, has resulted in comments and reviews concerning day-to-day activities. Sentiment analysis is the process of gathering and analyzing people’s opinions, thoughts, and impressions regarding various topics, products, subjects, and services. People’s opinions can be beneficial to corporations, governments, and individuals for collecting information and making decisions based on opinion. However, the sentiment analysis and evaluation procedure face numerous challenges. These challenges create impediments to accurately interpreting sentiments and determining the appropriate sentiment polarity. Sentiment analysis identifies and extracts subjective information from the text using natural language processing and text mining. This article discusses a complete overview of the method for completing this task as well as the applications of sentiment analysis. Then, it evaluates, compares, and investigates the approaches used to gain a comprehensive understanding of their advantages and disadvantages. Finally, the challenges of sentiment analysis are examined in order to define future directions. |
doi_str_mv | 10.1007/s10462-022-10144-1 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2708604311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A715771096</galeid><sourcerecordid>A715771096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-7ac6c11ce493ef428aec41ccc509c82979a5cf7872b61dda26c21c450c6e0a673</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOCV7fOZLPJ7rHUTyh40XOIs9k2Zb9MtkL_vakreJOBGWZ435nhYewaYYEA6i4gCMlT4DxFQCFSPGEzzFWWqjg_ZTPgskx5wfGcXYSwA4Cci2zG7pdJ2Psve0j6Lgm2G10bU2I60xyCC0lrx21fhdvEDEPjyIyu745dVyW0NU1ju40Nl-ysNk2wV791zt4fH95Wz-n69elltVynJICPqTIkCZGsKDNbC14YSwKJKIeSCl6q0uRUq0LxD4lVZbgkjiRyIGnBSJXN2c20d_D9596GUe_6vY-vBs0VFBJEhhhVi0m1MY3Vrqv70RuKUdnWUd_Z2sX5UkU8CqGU0cAnA_k-BG9rPXjXGn_QCPqIV094dcSrf_Dq45VsMoUojhD83y__uL4BBgh8cA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708604311</pqid></control><display><type>article</type><title>A survey on sentiment analysis methods, applications, and challenges</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wankhade, Mayur ; Rao, Annavarapu Chandra Sekhara ; Kulkarni, Chaitanya</creator><creatorcontrib>Wankhade, Mayur ; Rao, Annavarapu Chandra Sekhara ; Kulkarni, Chaitanya</creatorcontrib><description>The rapid growth of Internet-based applications, such as social media platforms and blogs, has resulted in comments and reviews concerning day-to-day activities. Sentiment analysis is the process of gathering and analyzing people’s opinions, thoughts, and impressions regarding various topics, products, subjects, and services. People’s opinions can be beneficial to corporations, governments, and individuals for collecting information and making decisions based on opinion. However, the sentiment analysis and evaluation procedure face numerous challenges. These challenges create impediments to accurately interpreting sentiments and determining the appropriate sentiment polarity. Sentiment analysis identifies and extracts subjective information from the text using natural language processing and text mining. This article discusses a complete overview of the method for completing this task as well as the applications of sentiment analysis. Then, it evaluates, compares, and investigates the approaches used to gain a comprehensive understanding of their advantages and disadvantages. Finally, the challenges of sentiment analysis are examined in order to define future directions.</description><identifier>ISSN: 0269-2821</identifier><identifier>EISSN: 1573-7462</identifier><identifier>DOI: 10.1007/s10462-022-10144-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Artificial Intelligence ; Computational linguistics ; Computer Science ; Data mining ; Decision analysis ; Decision-making ; Evaluation ; Language processing ; Natural language interfaces ; Natural language processing ; Sentiment analysis ; Social networks ; Surveys</subject><ispartof>The Artificial intelligence review, 2022-10, Vol.55 (7), p.5731-5780</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-7ac6c11ce493ef428aec41ccc509c82979a5cf7872b61dda26c21c450c6e0a673</citedby><cites>FETCH-LOGICAL-c402t-7ac6c11ce493ef428aec41ccc509c82979a5cf7872b61dda26c21c450c6e0a673</cites><orcidid>0000-0002-1053-014X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10462-022-10144-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10462-022-10144-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wankhade, Mayur</creatorcontrib><creatorcontrib>Rao, Annavarapu Chandra Sekhara</creatorcontrib><creatorcontrib>Kulkarni, Chaitanya</creatorcontrib><title>A survey on sentiment analysis methods, applications, and challenges</title><title>The Artificial intelligence review</title><addtitle>Artif Intell Rev</addtitle><description>The rapid growth of Internet-based applications, such as social media platforms and blogs, has resulted in comments and reviews concerning day-to-day activities. Sentiment analysis is the process of gathering and analyzing people’s opinions, thoughts, and impressions regarding various topics, products, subjects, and services. People’s opinions can be beneficial to corporations, governments, and individuals for collecting information and making decisions based on opinion. However, the sentiment analysis and evaluation procedure face numerous challenges. These challenges create impediments to accurately interpreting sentiments and determining the appropriate sentiment polarity. Sentiment analysis identifies and extracts subjective information from the text using natural language processing and text mining. This article discusses a complete overview of the method for completing this task as well as the applications of sentiment analysis. Then, it evaluates, compares, and investigates the approaches used to gain a comprehensive understanding of their advantages and disadvantages. Finally, the challenges of sentiment analysis are examined in order to define future directions.</description><subject>Artificial Intelligence</subject><subject>Computational linguistics</subject><subject>Computer Science</subject><subject>Data mining</subject><subject>Decision analysis</subject><subject>Decision-making</subject><subject>Evaluation</subject><subject>Language processing</subject><subject>Natural language interfaces</subject><subject>Natural language processing</subject><subject>Sentiment analysis</subject><subject>Social networks</subject><subject>Surveys</subject><issn>0269-2821</issn><issn>1573-7462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wNOCV7fOZLPJ7rHUTyh40XOIs9k2Zb9MtkL_vakreJOBGWZ435nhYewaYYEA6i4gCMlT4DxFQCFSPGEzzFWWqjg_ZTPgskx5wfGcXYSwA4Cci2zG7pdJ2Psve0j6Lgm2G10bU2I60xyCC0lrx21fhdvEDEPjyIyu745dVyW0NU1ju40Nl-ysNk2wV791zt4fH95Wz-n69elltVynJICPqTIkCZGsKDNbC14YSwKJKIeSCl6q0uRUq0LxD4lVZbgkjiRyIGnBSJXN2c20d_D9596GUe_6vY-vBs0VFBJEhhhVi0m1MY3Vrqv70RuKUdnWUd_Z2sX5UkU8CqGU0cAnA_k-BG9rPXjXGn_QCPqIV094dcSrf_Dq45VsMoUojhD83y__uL4BBgh8cA</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Wankhade, Mayur</creator><creator>Rao, Annavarapu Chandra Sekhara</creator><creator>Kulkarni, Chaitanya</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M1O</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-1053-014X</orcidid></search><sort><creationdate>20221001</creationdate><title>A survey on sentiment analysis methods, applications, and challenges</title><author>Wankhade, Mayur ; Rao, Annavarapu Chandra Sekhara ; Kulkarni, Chaitanya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-7ac6c11ce493ef428aec41ccc509c82979a5cf7872b61dda26c21c450c6e0a673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial Intelligence</topic><topic>Computational linguistics</topic><topic>Computer Science</topic><topic>Data mining</topic><topic>Decision analysis</topic><topic>Decision-making</topic><topic>Evaluation</topic><topic>Language processing</topic><topic>Natural language interfaces</topic><topic>Natural language processing</topic><topic>Sentiment analysis</topic><topic>Social networks</topic><topic>Surveys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wankhade, Mayur</creatorcontrib><creatorcontrib>Rao, Annavarapu Chandra Sekhara</creatorcontrib><creatorcontrib>Kulkarni, Chaitanya</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Library & Information Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Library Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>The Artificial intelligence review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wankhade, Mayur</au><au>Rao, Annavarapu Chandra Sekhara</au><au>Kulkarni, Chaitanya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A survey on sentiment analysis methods, applications, and challenges</atitle><jtitle>The Artificial intelligence review</jtitle><stitle>Artif Intell Rev</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>55</volume><issue>7</issue><spage>5731</spage><epage>5780</epage><pages>5731-5780</pages><issn>0269-2821</issn><eissn>1573-7462</eissn><abstract>The rapid growth of Internet-based applications, such as social media platforms and blogs, has resulted in comments and reviews concerning day-to-day activities. Sentiment analysis is the process of gathering and analyzing people’s opinions, thoughts, and impressions regarding various topics, products, subjects, and services. People’s opinions can be beneficial to corporations, governments, and individuals for collecting information and making decisions based on opinion. However, the sentiment analysis and evaluation procedure face numerous challenges. These challenges create impediments to accurately interpreting sentiments and determining the appropriate sentiment polarity. Sentiment analysis identifies and extracts subjective information from the text using natural language processing and text mining. This article discusses a complete overview of the method for completing this task as well as the applications of sentiment analysis. Then, it evaluates, compares, and investigates the approaches used to gain a comprehensive understanding of their advantages and disadvantages. Finally, the challenges of sentiment analysis are examined in order to define future directions.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10462-022-10144-1</doi><tpages>50</tpages><orcidid>https://orcid.org/0000-0002-1053-014X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0269-2821 |
ispartof | The Artificial intelligence review, 2022-10, Vol.55 (7), p.5731-5780 |
issn | 0269-2821 1573-7462 |
language | eng |
recordid | cdi_proquest_journals_2708604311 |
source | SpringerLink Journals - AutoHoldings |
subjects | Artificial Intelligence Computational linguistics Computer Science Data mining Decision analysis Decision-making Evaluation Language processing Natural language interfaces Natural language processing Sentiment analysis Social networks Surveys |
title | A survey on sentiment analysis methods, applications, and challenges |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T19%3A39%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20survey%20on%20sentiment%20analysis%20methods,%20applications,%20and%20challenges&rft.jtitle=The%20Artificial%20intelligence%20review&rft.au=Wankhade,%20Mayur&rft.date=2022-10-01&rft.volume=55&rft.issue=7&rft.spage=5731&rft.epage=5780&rft.pages=5731-5780&rft.issn=0269-2821&rft.eissn=1573-7462&rft_id=info:doi/10.1007/s10462-022-10144-1&rft_dat=%3Cgale_proqu%3EA715771096%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2708604311&rft_id=info:pmid/&rft_galeid=A715771096&rfr_iscdi=true |