Uncertainty-bounded reinforcement learning for revenue optimization in air cargo: a prescriptive learning approach

We propose a prescriptive learning approach for revenue management in air-cargo that combines machine learning prediction with decision making using deep reinforcement learning. This approach, named RL-Cargo, addresses a problem that is unique to the air-cargo business, namely the wide discrepancy b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge and information systems 2022-09, Vol.64 (9), p.2515-2541
Hauptverfasser: Rizzo, Stefano Giovanni, Chen, Yixian, Pang, Linsey, Lucas, Ji, Kaoudi, Zoi, Quiane, Jorge, Chawla, Sanjay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2541
container_issue 9
container_start_page 2515
container_title Knowledge and information systems
container_volume 64
creator Rizzo, Stefano Giovanni
Chen, Yixian
Pang, Linsey
Lucas, Ji
Kaoudi, Zoi
Quiane, Jorge
Chawla, Sanjay
description We propose a prescriptive learning approach for revenue management in air-cargo that combines machine learning prediction with decision making using deep reinforcement learning. This approach, named RL-Cargo, addresses a problem that is unique to the air-cargo business, namely the wide discrepancy between the quantity (weight or volume) that a shipper will book and the actual amount received at departure time by the airline. The discrepancy results in sub-optimal and inefficient behavior by both the shipper and the airline resulting in an overall loss of potential revenue for the airline. In the proposed approach, booking features and extracted disguised missing values are exploited to provide a prediction on the received volume, while a DQN method using uncertainty bounds from the prediction intervals is proposed for decision making. We have validated the benefits of RL-Cargo using a real dataset of 1000 flights to compare classical Dynamic Programming and Deep Reinforcement Learning techniques on offloading costs and revenue generation. Our results suggest that prescriptive learning which combines prediction with decision making provides a principled approach for managing the air cargo revenue ecosystem. Furthermore, the proposed approach can be abstracted to many other application domains where decision making needs to be carried out in face of both data and behavioral uncertainty.
doi_str_mv 10.1007/s10115-022-01713-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2708604306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2708604306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-e5d2fce491b4a82ef009699f0ceec0ee7a067cea586f237f3b759febd7519b6d3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxRdRsFa_gKeA5-jMprvpepPiPyh4seeQzU5qSptdk91C_fRGt-DN0wwzv_cevCy7RrhFAHkXERALDnnOASUKXpxkE8ix4gKxPD3uKKQ8zy5i3ECiSsRJFlbeUOi18_2B1-3gG2pYIOdtGwztyPdsSzp459csndJrT34g1na927kv3bvWM-eZdoEZHdbtPdOsCxRNcAnZ059cd11otfm4zM6s3ka6Os5ptnp6fF-88OXb8-viYclNLqHnVDS5NTSrsJ7peU4WoCqryoIhMkAkNZTSkC7mpc2FtKKWRWWpbmSBVV02YprdjL4p9nOg2KtNOwSfIlUKmJcwE1AmKh8pE9oYA1nVBbfT4aAQ1E-3auxWpW7Vb7eqSCIximKC_ZrCn_U_qm_36n-Z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708604306</pqid></control><display><type>article</type><title>Uncertainty-bounded reinforcement learning for revenue optimization in air cargo: a prescriptive learning approach</title><source>SpringerLink Journals - AutoHoldings</source><creator>Rizzo, Stefano Giovanni ; Chen, Yixian ; Pang, Linsey ; Lucas, Ji ; Kaoudi, Zoi ; Quiane, Jorge ; Chawla, Sanjay</creator><creatorcontrib>Rizzo, Stefano Giovanni ; Chen, Yixian ; Pang, Linsey ; Lucas, Ji ; Kaoudi, Zoi ; Quiane, Jorge ; Chawla, Sanjay</creatorcontrib><description>We propose a prescriptive learning approach for revenue management in air-cargo that combines machine learning prediction with decision making using deep reinforcement learning. This approach, named RL-Cargo, addresses a problem that is unique to the air-cargo business, namely the wide discrepancy between the quantity (weight or volume) that a shipper will book and the actual amount received at departure time by the airline. The discrepancy results in sub-optimal and inefficient behavior by both the shipper and the airline resulting in an overall loss of potential revenue for the airline. In the proposed approach, booking features and extracted disguised missing values are exploited to provide a prediction on the received volume, while a DQN method using uncertainty bounds from the prediction intervals is proposed for decision making. We have validated the benefits of RL-Cargo using a real dataset of 1000 flights to compare classical Dynamic Programming and Deep Reinforcement Learning techniques on offloading costs and revenue generation. Our results suggest that prescriptive learning which combines prediction with decision making provides a principled approach for managing the air cargo revenue ecosystem. Furthermore, the proposed approach can be abstracted to many other application domains where decision making needs to be carried out in face of both data and behavioral uncertainty.</description><identifier>ISSN: 0219-1377</identifier><identifier>EISSN: 0219-3116</identifier><identifier>DOI: 10.1007/s10115-022-01713-5</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Air cargo ; Airline operations ; Airlines ; Cargo capacity ; Computer Science ; Data Mining and Knowledge Discovery ; Database Management ; Decision making ; Deep learning ; Dynamic programming ; Feature extraction ; Information Storage and Retrieval ; Information Systems and Communication Service ; Information Systems Applications (incl.Internet) ; IT in Business ; Machine learning ; Optimization ; Predictive analytics ; Regular Paper ; Revenue ; Uncertainty</subject><ispartof>Knowledge and information systems, 2022-09, Vol.64 (9), p.2515-2541</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-e5d2fce491b4a82ef009699f0ceec0ee7a067cea586f237f3b759febd7519b6d3</cites><orcidid>0000-0003-3346-3389</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10115-022-01713-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10115-022-01713-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Rizzo, Stefano Giovanni</creatorcontrib><creatorcontrib>Chen, Yixian</creatorcontrib><creatorcontrib>Pang, Linsey</creatorcontrib><creatorcontrib>Lucas, Ji</creatorcontrib><creatorcontrib>Kaoudi, Zoi</creatorcontrib><creatorcontrib>Quiane, Jorge</creatorcontrib><creatorcontrib>Chawla, Sanjay</creatorcontrib><title>Uncertainty-bounded reinforcement learning for revenue optimization in air cargo: a prescriptive learning approach</title><title>Knowledge and information systems</title><addtitle>Knowl Inf Syst</addtitle><description>We propose a prescriptive learning approach for revenue management in air-cargo that combines machine learning prediction with decision making using deep reinforcement learning. This approach, named RL-Cargo, addresses a problem that is unique to the air-cargo business, namely the wide discrepancy between the quantity (weight or volume) that a shipper will book and the actual amount received at departure time by the airline. The discrepancy results in sub-optimal and inefficient behavior by both the shipper and the airline resulting in an overall loss of potential revenue for the airline. In the proposed approach, booking features and extracted disguised missing values are exploited to provide a prediction on the received volume, while a DQN method using uncertainty bounds from the prediction intervals is proposed for decision making. We have validated the benefits of RL-Cargo using a real dataset of 1000 flights to compare classical Dynamic Programming and Deep Reinforcement Learning techniques on offloading costs and revenue generation. Our results suggest that prescriptive learning which combines prediction with decision making provides a principled approach for managing the air cargo revenue ecosystem. Furthermore, the proposed approach can be abstracted to many other application domains where decision making needs to be carried out in face of both data and behavioral uncertainty.</description><subject>Air cargo</subject><subject>Airline operations</subject><subject>Airlines</subject><subject>Cargo capacity</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Database Management</subject><subject>Decision making</subject><subject>Deep learning</subject><subject>Dynamic programming</subject><subject>Feature extraction</subject><subject>Information Storage and Retrieval</subject><subject>Information Systems and Communication Service</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>IT in Business</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>Predictive analytics</subject><subject>Regular Paper</subject><subject>Revenue</subject><subject>Uncertainty</subject><issn>0219-1377</issn><issn>0219-3116</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LAzEQxRdRsFa_gKeA5-jMprvpepPiPyh4seeQzU5qSptdk91C_fRGt-DN0wwzv_cevCy7RrhFAHkXERALDnnOASUKXpxkE8ix4gKxPD3uKKQ8zy5i3ECiSsRJFlbeUOi18_2B1-3gG2pYIOdtGwztyPdsSzp459csndJrT34g1na927kv3bvWM-eZdoEZHdbtPdOsCxRNcAnZ059cd11otfm4zM6s3ka6Os5ptnp6fF-88OXb8-viYclNLqHnVDS5NTSrsJ7peU4WoCqryoIhMkAkNZTSkC7mpc2FtKKWRWWpbmSBVV02YprdjL4p9nOg2KtNOwSfIlUKmJcwE1AmKh8pE9oYA1nVBbfT4aAQ1E-3auxWpW7Vb7eqSCIximKC_ZrCn_U_qm_36n-Z</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Rizzo, Stefano Giovanni</creator><creator>Chen, Yixian</creator><creator>Pang, Linsey</creator><creator>Lucas, Ji</creator><creator>Kaoudi, Zoi</creator><creator>Quiane, Jorge</creator><creator>Chawla, Sanjay</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-3346-3389</orcidid></search><sort><creationdate>20220901</creationdate><title>Uncertainty-bounded reinforcement learning for revenue optimization in air cargo: a prescriptive learning approach</title><author>Rizzo, Stefano Giovanni ; Chen, Yixian ; Pang, Linsey ; Lucas, Ji ; Kaoudi, Zoi ; Quiane, Jorge ; Chawla, Sanjay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-e5d2fce491b4a82ef009699f0ceec0ee7a067cea586f237f3b759febd7519b6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Air cargo</topic><topic>Airline operations</topic><topic>Airlines</topic><topic>Cargo capacity</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Database Management</topic><topic>Decision making</topic><topic>Deep learning</topic><topic>Dynamic programming</topic><topic>Feature extraction</topic><topic>Information Storage and Retrieval</topic><topic>Information Systems and Communication Service</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>IT in Business</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>Predictive analytics</topic><topic>Regular Paper</topic><topic>Revenue</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rizzo, Stefano Giovanni</creatorcontrib><creatorcontrib>Chen, Yixian</creatorcontrib><creatorcontrib>Pang, Linsey</creatorcontrib><creatorcontrib>Lucas, Ji</creatorcontrib><creatorcontrib>Kaoudi, Zoi</creatorcontrib><creatorcontrib>Quiane, Jorge</creatorcontrib><creatorcontrib>Chawla, Sanjay</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI-INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Knowledge and information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rizzo, Stefano Giovanni</au><au>Chen, Yixian</au><au>Pang, Linsey</au><au>Lucas, Ji</au><au>Kaoudi, Zoi</au><au>Quiane, Jorge</au><au>Chawla, Sanjay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainty-bounded reinforcement learning for revenue optimization in air cargo: a prescriptive learning approach</atitle><jtitle>Knowledge and information systems</jtitle><stitle>Knowl Inf Syst</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>64</volume><issue>9</issue><spage>2515</spage><epage>2541</epage><pages>2515-2541</pages><issn>0219-1377</issn><eissn>0219-3116</eissn><abstract>We propose a prescriptive learning approach for revenue management in air-cargo that combines machine learning prediction with decision making using deep reinforcement learning. This approach, named RL-Cargo, addresses a problem that is unique to the air-cargo business, namely the wide discrepancy between the quantity (weight or volume) that a shipper will book and the actual amount received at departure time by the airline. The discrepancy results in sub-optimal and inefficient behavior by both the shipper and the airline resulting in an overall loss of potential revenue for the airline. In the proposed approach, booking features and extracted disguised missing values are exploited to provide a prediction on the received volume, while a DQN method using uncertainty bounds from the prediction intervals is proposed for decision making. We have validated the benefits of RL-Cargo using a real dataset of 1000 flights to compare classical Dynamic Programming and Deep Reinforcement Learning techniques on offloading costs and revenue generation. Our results suggest that prescriptive learning which combines prediction with decision making provides a principled approach for managing the air cargo revenue ecosystem. Furthermore, the proposed approach can be abstracted to many other application domains where decision making needs to be carried out in face of both data and behavioral uncertainty.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s10115-022-01713-5</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0003-3346-3389</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0219-1377
ispartof Knowledge and information systems, 2022-09, Vol.64 (9), p.2515-2541
issn 0219-1377
0219-3116
language eng
recordid cdi_proquest_journals_2708604306
source SpringerLink Journals - AutoHoldings
subjects Air cargo
Airline operations
Airlines
Cargo capacity
Computer Science
Data Mining and Knowledge Discovery
Database Management
Decision making
Deep learning
Dynamic programming
Feature extraction
Information Storage and Retrieval
Information Systems and Communication Service
Information Systems Applications (incl.Internet)
IT in Business
Machine learning
Optimization
Predictive analytics
Regular Paper
Revenue
Uncertainty
title Uncertainty-bounded reinforcement learning for revenue optimization in air cargo: a prescriptive learning approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T17%3A03%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainty-bounded%20reinforcement%20learning%20for%20revenue%20optimization%20in%20air%20cargo:%20a%20prescriptive%20learning%20approach&rft.jtitle=Knowledge%20and%20information%20systems&rft.au=Rizzo,%20Stefano%20Giovanni&rft.date=2022-09-01&rft.volume=64&rft.issue=9&rft.spage=2515&rft.epage=2541&rft.pages=2515-2541&rft.issn=0219-1377&rft.eissn=0219-3116&rft_id=info:doi/10.1007/s10115-022-01713-5&rft_dat=%3Cproquest_cross%3E2708604306%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2708604306&rft_id=info:pmid/&rfr_iscdi=true