Sound absorption of two-dimensional rough tube porous materials

In this paper, a theoretical model for predicting the sound absorption performance of two-dimensional rough tube porous materials is established based on the Johnson–Champoux–Allard–Lafarge equivalent fluid model. The shape of the two-dimensional rough tube is approximated by trigonometric functions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2022-08, Vol.34 (8)
Hauptverfasser: Zhang, Lei, Zhang, Weitao, Xin, Fengxian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Physics of fluids (1994)
container_volume 34
creator Zhang, Lei
Zhang, Weitao
Xin, Fengxian
description In this paper, a theoretical model for predicting the sound absorption performance of two-dimensional rough tube porous materials is established based on the Johnson–Champoux–Allard–Lafarge equivalent fluid model. The shape of the two-dimensional rough tube is approximated by trigonometric functions, and the theoretical expressions of its fluid transport parameters are given, including viscous permeability, thermal permeability, tortuosity, viscous characteristic length, and thermal characteristic length. In addition, the influence of shape factor is considered when calculating the thermal permeability and the viscous characteristic length, and its theoretical expression is given. The theoretical model is verified by a numerical simulation model based on the multi-scale asymptotic method, and good agreement is achieved. Compared with smooth tubes, circumferential rough tubes and axial rough tubes, the two-dimensional rough tubes not only enhance the viscous dissipation effect but also enhance the thermal dissipation effect during the propagation of sound waves, thus, realizing the high-efficiency sound absorption at lower frequencies. This work further develops the sound absorption theory of porous materials considering the roughness effect and enriches the research and design ideas of porous materials.
doi_str_mv 10.1063/5.0099208
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2708579998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2708579998</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-41d75020334fa668a458103297fa35d0de133b030f02fb73069433d3598335d33</originalsourceid><addsrcrecordid>eNqdkEtLAzEUhYMoWKsL_0HAlcLUm9xJMlmJFF9QcKGuQ2aS6JS2GZMZxX_vlBbcuzr38XE59xByzmDGQOK1mAFozaE6IBMGlS6UlPJwWysopER2TE5yXgIAai4n5OYlDhtHbZ1j6vo2bmgMtP-OhWvXfpPHgV3RFIf3D9oPtaddHJtM17b3qbWrfEqOwij-bK9T8nZ_9zp_LBbPD0_z20XRIFd9UTKnBHBALIOVsrKlqBgg1ypYFA6cZ4g1IATgoVYIUpeIDoWucNwjTsnF7m6X4ufgc2-WcUijuWy4gkoorUd0Si53VJNizskH06V2bdOPYWC2-Rhh9vmM7NWOzU3b2-3r_4O_YvoDTecC_gJsp3Ga</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708579998</pqid></control><display><type>article</type><title>Sound absorption of two-dimensional rough tube porous materials</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Zhang, Lei ; Zhang, Weitao ; Xin, Fengxian</creator><creatorcontrib>Zhang, Lei ; Zhang, Weitao ; Xin, Fengxian</creatorcontrib><description>In this paper, a theoretical model for predicting the sound absorption performance of two-dimensional rough tube porous materials is established based on the Johnson–Champoux–Allard–Lafarge equivalent fluid model. The shape of the two-dimensional rough tube is approximated by trigonometric functions, and the theoretical expressions of its fluid transport parameters are given, including viscous permeability, thermal permeability, tortuosity, viscous characteristic length, and thermal characteristic length. In addition, the influence of shape factor is considered when calculating the thermal permeability and the viscous characteristic length, and its theoretical expression is given. The theoretical model is verified by a numerical simulation model based on the multi-scale asymptotic method, and good agreement is achieved. Compared with smooth tubes, circumferential rough tubes and axial rough tubes, the two-dimensional rough tubes not only enhance the viscous dissipation effect but also enhance the thermal dissipation effect during the propagation of sound waves, thus, realizing the high-efficiency sound absorption at lower frequencies. This work further develops the sound absorption theory of porous materials considering the roughness effect and enriches the research and design ideas of porous materials.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0099208</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Absorption ; Asymptotic methods ; Dissipation ; Performance prediction ; Permeability ; Porous materials ; Shape factor ; Simulation models ; Sound propagation ; Sound transmission ; Sound waves ; Tortuosity ; Trigonometric functions ; Tubes ; Wave propagation</subject><ispartof>Physics of fluids (1994), 2022-08, Vol.34 (8)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-41d75020334fa668a458103297fa35d0de133b030f02fb73069433d3598335d33</citedby><cites>FETCH-LOGICAL-c327t-41d75020334fa668a458103297fa35d0de133b030f02fb73069433d3598335d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Zhang, Weitao</creatorcontrib><creatorcontrib>Xin, Fengxian</creatorcontrib><title>Sound absorption of two-dimensional rough tube porous materials</title><title>Physics of fluids (1994)</title><description>In this paper, a theoretical model for predicting the sound absorption performance of two-dimensional rough tube porous materials is established based on the Johnson–Champoux–Allard–Lafarge equivalent fluid model. The shape of the two-dimensional rough tube is approximated by trigonometric functions, and the theoretical expressions of its fluid transport parameters are given, including viscous permeability, thermal permeability, tortuosity, viscous characteristic length, and thermal characteristic length. In addition, the influence of shape factor is considered when calculating the thermal permeability and the viscous characteristic length, and its theoretical expression is given. The theoretical model is verified by a numerical simulation model based on the multi-scale asymptotic method, and good agreement is achieved. Compared with smooth tubes, circumferential rough tubes and axial rough tubes, the two-dimensional rough tubes not only enhance the viscous dissipation effect but also enhance the thermal dissipation effect during the propagation of sound waves, thus, realizing the high-efficiency sound absorption at lower frequencies. This work further develops the sound absorption theory of porous materials considering the roughness effect and enriches the research and design ideas of porous materials.</description><subject>Absorption</subject><subject>Asymptotic methods</subject><subject>Dissipation</subject><subject>Performance prediction</subject><subject>Permeability</subject><subject>Porous materials</subject><subject>Shape factor</subject><subject>Simulation models</subject><subject>Sound propagation</subject><subject>Sound transmission</subject><subject>Sound waves</subject><subject>Tortuosity</subject><subject>Trigonometric functions</subject><subject>Tubes</subject><subject>Wave propagation</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqdkEtLAzEUhYMoWKsL_0HAlcLUm9xJMlmJFF9QcKGuQ2aS6JS2GZMZxX_vlBbcuzr38XE59xByzmDGQOK1mAFozaE6IBMGlS6UlPJwWysopER2TE5yXgIAai4n5OYlDhtHbZ1j6vo2bmgMtP-OhWvXfpPHgV3RFIf3D9oPtaddHJtM17b3qbWrfEqOwij-bK9T8nZ_9zp_LBbPD0_z20XRIFd9UTKnBHBALIOVsrKlqBgg1ypYFA6cZ4g1IATgoVYIUpeIDoWucNwjTsnF7m6X4ufgc2-WcUijuWy4gkoorUd0Si53VJNizskH06V2bdOPYWC2-Rhh9vmM7NWOzU3b2-3r_4O_YvoDTecC_gJsp3Ga</recordid><startdate>202208</startdate><enddate>202208</enddate><creator>Zhang, Lei</creator><creator>Zhang, Weitao</creator><creator>Xin, Fengxian</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>202208</creationdate><title>Sound absorption of two-dimensional rough tube porous materials</title><author>Zhang, Lei ; Zhang, Weitao ; Xin, Fengxian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-41d75020334fa668a458103297fa35d0de133b030f02fb73069433d3598335d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Absorption</topic><topic>Asymptotic methods</topic><topic>Dissipation</topic><topic>Performance prediction</topic><topic>Permeability</topic><topic>Porous materials</topic><topic>Shape factor</topic><topic>Simulation models</topic><topic>Sound propagation</topic><topic>Sound transmission</topic><topic>Sound waves</topic><topic>Tortuosity</topic><topic>Trigonometric functions</topic><topic>Tubes</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Zhang, Weitao</creatorcontrib><creatorcontrib>Xin, Fengxian</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Lei</au><au>Zhang, Weitao</au><au>Xin, Fengxian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sound absorption of two-dimensional rough tube porous materials</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2022-08</date><risdate>2022</risdate><volume>34</volume><issue>8</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>In this paper, a theoretical model for predicting the sound absorption performance of two-dimensional rough tube porous materials is established based on the Johnson–Champoux–Allard–Lafarge equivalent fluid model. The shape of the two-dimensional rough tube is approximated by trigonometric functions, and the theoretical expressions of its fluid transport parameters are given, including viscous permeability, thermal permeability, tortuosity, viscous characteristic length, and thermal characteristic length. In addition, the influence of shape factor is considered when calculating the thermal permeability and the viscous characteristic length, and its theoretical expression is given. The theoretical model is verified by a numerical simulation model based on the multi-scale asymptotic method, and good agreement is achieved. Compared with smooth tubes, circumferential rough tubes and axial rough tubes, the two-dimensional rough tubes not only enhance the viscous dissipation effect but also enhance the thermal dissipation effect during the propagation of sound waves, thus, realizing the high-efficiency sound absorption at lower frequencies. This work further develops the sound absorption theory of porous materials considering the roughness effect and enriches the research and design ideas of porous materials.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0099208</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2022-08, Vol.34 (8)
issn 1070-6631
1089-7666
language eng
recordid cdi_proquest_journals_2708579998
source AIP Journals Complete; Alma/SFX Local Collection
subjects Absorption
Asymptotic methods
Dissipation
Performance prediction
Permeability
Porous materials
Shape factor
Simulation models
Sound propagation
Sound transmission
Sound waves
Tortuosity
Trigonometric functions
Tubes
Wave propagation
title Sound absorption of two-dimensional rough tube porous materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A19%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sound%20absorption%20of%20two-dimensional%20rough%20tube%20porous%20materials&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Zhang,%20Lei&rft.date=2022-08&rft.volume=34&rft.issue=8&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0099208&rft_dat=%3Cproquest_cross%3E2708579998%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2708579998&rft_id=info:pmid/&rfr_iscdi=true