The adsorption of halogen molecules on Ti (110) surface

Adsorption of halogen on the metal surface has received much attention due to its technological applications and major relevance for material surface processing, corrosion protection and etching. In this work, first-principle approach was used to investigate the interaction of halogen molecules on T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials research 2021-02, Vol.36 (3), p.592-601
Hauptverfasser: Tshwane, D. M., Modiba, R., Govender, G., Ngoepe, P. E., Chauke, H. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 601
container_issue 3
container_start_page 592
container_title Journal of materials research
container_volume 36
creator Tshwane, D. M.
Modiba, R.
Govender, G.
Ngoepe, P. E.
Chauke, H. R.
description Adsorption of halogen on the metal surface has received much attention due to its technological applications and major relevance for material surface processing, corrosion protection and etching. In this work, first-principle approach was used to investigate the interaction of halogen molecules on Ti (110) surface. The present results revealed that adsorption of the halogen molecule is exothermic and occurs by dissociation bonding. The HF molecule was found to be more thermodynamically stable than the HI molecule. In addition, our results revealed that the adsorption of halogen ions on Ti (110) surface is energetically favourable than the adsorption of halogen molecule. The possible adsorption sites were tested, and the top site position was found to be the most favourable followed by the hollow and bridging site for both halogens. Furthermore, the results showed the linear relationship between adsorption energy strength and charge transfer. Also, the density of states and charge density difference was studied to investigate the electronic interaction. The charge redistribution showed an electron depletion on Ti atom and charge accumulation on the halogen region. Graphic Abstract
doi_str_mv 10.1557/s43578-021-00106-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2708280834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2708280834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-98d244f9366c6b237ae0815f62c7193f5f34722ca3afc95f37fc09a9e661c2173</originalsourceid><addsrcrecordid>eNp9kMtKQzEQhoMoWKsv4CrgRhfRyT1ZSvEGBTd1HWKa9MLpSU16Fr690SO4czXM8P3_wIfQJYVbKqW-q4JLbQgwSgAoKGKO0ISBEERypo7RBIwRhFkqTtFZrdsGSdBigvRiHbFf1lz2h03ucU547bu8ij3e5S6GoYsVt_tig68phRtch5J8iOfoJPmuxovfOUVvjw-L2TOZvz69zO7nJHCpDsSaJRMiWa5UUO-Max_BUJkUC5panmTiQjMWPPcp2LbpFMB6G5WigVHNp-hq7N2X_DHEenDbPJS-vXRMg2EGDBeNYiMVSq61xOT2ZbPz5dNRcN-C3CjINUHuR5AzLcTHUG1wv4rlr_qf1Bd6f2W9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708280834</pqid></control><display><type>article</type><title>The adsorption of halogen molecules on Ti (110) surface</title><source>SpringerLink Journals - AutoHoldings</source><creator>Tshwane, D. M. ; Modiba, R. ; Govender, G. ; Ngoepe, P. E. ; Chauke, H. R.</creator><creatorcontrib>Tshwane, D. M. ; Modiba, R. ; Govender, G. ; Ngoepe, P. E. ; Chauke, H. R.</creatorcontrib><description>Adsorption of halogen on the metal surface has received much attention due to its technological applications and major relevance for material surface processing, corrosion protection and etching. In this work, first-principle approach was used to investigate the interaction of halogen molecules on Ti (110) surface. The present results revealed that adsorption of the halogen molecule is exothermic and occurs by dissociation bonding. The HF molecule was found to be more thermodynamically stable than the HI molecule. In addition, our results revealed that the adsorption of halogen ions on Ti (110) surface is energetically favourable than the adsorption of halogen molecule. The possible adsorption sites were tested, and the top site position was found to be the most favourable followed by the hollow and bridging site for both halogens. Furthermore, the results showed the linear relationship between adsorption energy strength and charge transfer. Also, the density of states and charge density difference was studied to investigate the electronic interaction. The charge redistribution showed an electron depletion on Ti atom and charge accumulation on the halogen region. Graphic Abstract</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/s43578-021-00106-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Adsorption ; Applied and Technical Physics ; Biomaterials ; Charge density ; Charge transfer ; Chemical bonds ; Chemistry and Materials Science ; Corrosion prevention ; Depletion ; First principles ; Halogens ; Inorganic Chemistry ; Materials Engineering ; Materials research ; Materials Science ; Metal surfaces ; Nanotechnology ; Surface chemistry ; Titanium</subject><ispartof>Journal of materials research, 2021-02, Vol.36 (3), p.592-601</ispartof><rights>The Author(s), under exclusive licence to The Materials Research Society 2021</rights><rights>The Author(s), under exclusive licence to The Materials Research Society 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-98d244f9366c6b237ae0815f62c7193f5f34722ca3afc95f37fc09a9e661c2173</citedby><cites>FETCH-LOGICAL-c356t-98d244f9366c6b237ae0815f62c7193f5f34722ca3afc95f37fc09a9e661c2173</cites><orcidid>0000-0003-2603-5941</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/s43578-021-00106-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1557/s43578-021-00106-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Tshwane, D. M.</creatorcontrib><creatorcontrib>Modiba, R.</creatorcontrib><creatorcontrib>Govender, G.</creatorcontrib><creatorcontrib>Ngoepe, P. E.</creatorcontrib><creatorcontrib>Chauke, H. R.</creatorcontrib><title>The adsorption of halogen molecules on Ti (110) surface</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><description>Adsorption of halogen on the metal surface has received much attention due to its technological applications and major relevance for material surface processing, corrosion protection and etching. In this work, first-principle approach was used to investigate the interaction of halogen molecules on Ti (110) surface. The present results revealed that adsorption of the halogen molecule is exothermic and occurs by dissociation bonding. The HF molecule was found to be more thermodynamically stable than the HI molecule. In addition, our results revealed that the adsorption of halogen ions on Ti (110) surface is energetically favourable than the adsorption of halogen molecule. The possible adsorption sites were tested, and the top site position was found to be the most favourable followed by the hollow and bridging site for both halogens. Furthermore, the results showed the linear relationship between adsorption energy strength and charge transfer. Also, the density of states and charge density difference was studied to investigate the electronic interaction. The charge redistribution showed an electron depletion on Ti atom and charge accumulation on the halogen region. Graphic Abstract</description><subject>Adsorption</subject><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Charge density</subject><subject>Charge transfer</subject><subject>Chemical bonds</subject><subject>Chemistry and Materials Science</subject><subject>Corrosion prevention</subject><subject>Depletion</subject><subject>First principles</subject><subject>Halogens</subject><subject>Inorganic Chemistry</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Metal surfaces</subject><subject>Nanotechnology</subject><subject>Surface chemistry</subject><subject>Titanium</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKQzEQhoMoWKsv4CrgRhfRyT1ZSvEGBTd1HWKa9MLpSU16Fr690SO4czXM8P3_wIfQJYVbKqW-q4JLbQgwSgAoKGKO0ISBEERypo7RBIwRhFkqTtFZrdsGSdBigvRiHbFf1lz2h03ucU547bu8ij3e5S6GoYsVt_tig68phRtch5J8iOfoJPmuxovfOUVvjw-L2TOZvz69zO7nJHCpDsSaJRMiWa5UUO-Max_BUJkUC5panmTiQjMWPPcp2LbpFMB6G5WigVHNp-hq7N2X_DHEenDbPJS-vXRMg2EGDBeNYiMVSq61xOT2ZbPz5dNRcN-C3CjINUHuR5AzLcTHUG1wv4rlr_qf1Bd6f2W9</recordid><startdate>20210215</startdate><enddate>20210215</enddate><creator>Tshwane, D. M.</creator><creator>Modiba, R.</creator><creator>Govender, G.</creator><creator>Ngoepe, P. E.</creator><creator>Chauke, H. R.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-2603-5941</orcidid></search><sort><creationdate>20210215</creationdate><title>The adsorption of halogen molecules on Ti (110) surface</title><author>Tshwane, D. M. ; Modiba, R. ; Govender, G. ; Ngoepe, P. E. ; Chauke, H. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-98d244f9366c6b237ae0815f62c7193f5f34722ca3afc95f37fc09a9e661c2173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adsorption</topic><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Charge density</topic><topic>Charge transfer</topic><topic>Chemical bonds</topic><topic>Chemistry and Materials Science</topic><topic>Corrosion prevention</topic><topic>Depletion</topic><topic>First principles</topic><topic>Halogens</topic><topic>Inorganic Chemistry</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Metal surfaces</topic><topic>Nanotechnology</topic><topic>Surface chemistry</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tshwane, D. M.</creatorcontrib><creatorcontrib>Modiba, R.</creatorcontrib><creatorcontrib>Govender, G.</creatorcontrib><creatorcontrib>Ngoepe, P. E.</creatorcontrib><creatorcontrib>Chauke, H. R.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tshwane, D. M.</au><au>Modiba, R.</au><au>Govender, G.</au><au>Ngoepe, P. E.</au><au>Chauke, H. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The adsorption of halogen molecules on Ti (110) surface</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><date>2021-02-15</date><risdate>2021</risdate><volume>36</volume><issue>3</issue><spage>592</spage><epage>601</epage><pages>592-601</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>Adsorption of halogen on the metal surface has received much attention due to its technological applications and major relevance for material surface processing, corrosion protection and etching. In this work, first-principle approach was used to investigate the interaction of halogen molecules on Ti (110) surface. The present results revealed that adsorption of the halogen molecule is exothermic and occurs by dissociation bonding. The HF molecule was found to be more thermodynamically stable than the HI molecule. In addition, our results revealed that the adsorption of halogen ions on Ti (110) surface is energetically favourable than the adsorption of halogen molecule. The possible adsorption sites were tested, and the top site position was found to be the most favourable followed by the hollow and bridging site for both halogens. Furthermore, the results showed the linear relationship between adsorption energy strength and charge transfer. Also, the density of states and charge density difference was studied to investigate the electronic interaction. The charge redistribution showed an electron depletion on Ti atom and charge accumulation on the halogen region. Graphic Abstract</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1557/s43578-021-00106-8</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2603-5941</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0884-2914
ispartof Journal of materials research, 2021-02, Vol.36 (3), p.592-601
issn 0884-2914
2044-5326
language eng
recordid cdi_proquest_journals_2708280834
source SpringerLink Journals - AutoHoldings
subjects Adsorption
Applied and Technical Physics
Biomaterials
Charge density
Charge transfer
Chemical bonds
Chemistry and Materials Science
Corrosion prevention
Depletion
First principles
Halogens
Inorganic Chemistry
Materials Engineering
Materials research
Materials Science
Metal surfaces
Nanotechnology
Surface chemistry
Titanium
title The adsorption of halogen molecules on Ti (110) surface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A52%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20adsorption%20of%20halogen%20molecules%20on%20Ti%20(110)%20surface&rft.jtitle=Journal%20of%20materials%20research&rft.au=Tshwane,%20D.%20M.&rft.date=2021-02-15&rft.volume=36&rft.issue=3&rft.spage=592&rft.epage=601&rft.pages=592-601&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/s43578-021-00106-8&rft_dat=%3Cproquest_cross%3E2708280834%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2708280834&rft_id=info:pmid/&rfr_iscdi=true