Electrochemical energy storage on nanoporous copper sponge

A proof-of-principle double-layer symmetrical supercapacitor with nanoporous copper/copper oxide electrodes and an aqueous electrolyte is investigated. The electrodes are manufactured by selective dissolution of Al from a eutectic composition of Cu 17.5 Al 82.5 using 5 M NaOH. The ostensible (i.e.,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials research 2022-07, Vol.37 (13), p.2195-2203
Hauptverfasser: McPherson, David J., Dowd, Annette, Arnold, Matthew D., Gentle, Angus, Cortie, Michael B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2203
container_issue 13
container_start_page 2195
container_title Journal of materials research
container_volume 37
creator McPherson, David J.
Dowd, Annette
Arnold, Matthew D.
Gentle, Angus
Cortie, Michael B.
description A proof-of-principle double-layer symmetrical supercapacitor with nanoporous copper/copper oxide electrodes and an aqueous electrolyte is investigated. The electrodes are manufactured by selective dissolution of Al from a eutectic composition of Cu 17.5 Al 82.5 using 5 M NaOH. The ostensible (i.e., net external) capacitance of a symmetrical two-electrode cell with 0.1 M KNO 3 electrolyte is assessed over a series of charge/discharge cycles and is about 2 F per gram of Cu in this simple prototype. Capacitance varies during a discharge cycle due evidently to the deeply buried surfaces and pseudocapacitive reactions contributing charge toward the end of a discharge cycle. In principle such a device should have very low ohmic losses due to its highly conductive backbone and would be suitable for applications requiring maximum energy efficiency over repeated cycling. The aqueous electrolyte ensures fire safety but this comes at the cost of lower energy content. Graphical abstract
doi_str_mv 10.1557/s43578-022-00535-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2708280718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2708280718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-f3943c7a33038a9299cbb01f5b87cf08a3d10138d2361ddbb1058aa29a2df6ef3</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwB5giMRue_ezYYUNV-ZAqscBsOY5dWrVxsJOh_fUEgsTG9JZz79U7hFwzuGVSqrssUCpNgXMKIFHS4wmZcRCCSuTlKZmB1oLyiolzcpHzFoBJUGJG7pc77_oU3Yffb5zdFb71aX0och-TXfsitkVr29jFFIdcuNh1PhW5i-3aX5KzYHfZX_3eOXl_XL4tnunq9ell8bCiDkvsacBKoFMWEVDbileVq2tgQdZauQDaYsOAoW44lqxp6pqB1NbyyvImlD7gnNxMvV2Kn4PPvdnGIbXjpOEKNNegmB4pPlEuxZyTD6ZLm71NB8PAfDsykyMzOjI_jsxxDOEUyiM8vpT-qv9JfQEICGp1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708280718</pqid></control><display><type>article</type><title>Electrochemical energy storage on nanoporous copper sponge</title><source>SpringerLink Journals</source><creator>McPherson, David J. ; Dowd, Annette ; Arnold, Matthew D. ; Gentle, Angus ; Cortie, Michael B.</creator><creatorcontrib>McPherson, David J. ; Dowd, Annette ; Arnold, Matthew D. ; Gentle, Angus ; Cortie, Michael B.</creatorcontrib><description>A proof-of-principle double-layer symmetrical supercapacitor with nanoporous copper/copper oxide electrodes and an aqueous electrolyte is investigated. The electrodes are manufactured by selective dissolution of Al from a eutectic composition of Cu 17.5 Al 82.5 using 5 M NaOH. The ostensible (i.e., net external) capacitance of a symmetrical two-electrode cell with 0.1 M KNO 3 electrolyte is assessed over a series of charge/discharge cycles and is about 2 F per gram of Cu in this simple prototype. Capacitance varies during a discharge cycle due evidently to the deeply buried surfaces and pseudocapacitive reactions contributing charge toward the end of a discharge cycle. In principle such a device should have very low ohmic losses due to its highly conductive backbone and would be suitable for applications requiring maximum energy efficiency over repeated cycling. The aqueous electrolyte ensures fire safety but this comes at the cost of lower energy content. Graphical abstract</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/s43578-022-00535-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applied and Technical Physics ; Aqueous electrolytes ; Biomaterials ; Capacitance ; Chemistry and Materials Science ; Copper ; Copper oxides ; Discharge ; Electrodes ; Energy storage ; Eutectic composition ; Fire protection ; Fire safety ; Inorganic Chemistry ; Materials Engineering ; Materials research ; Materials Science ; Nanotechnology ; Principles</subject><ispartof>Journal of materials research, 2022-07, Vol.37 (13), p.2195-2203</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-f3943c7a33038a9299cbb01f5b87cf08a3d10138d2361ddbb1058aa29a2df6ef3</citedby><cites>FETCH-LOGICAL-c363t-f3943c7a33038a9299cbb01f5b87cf08a3d10138d2361ddbb1058aa29a2df6ef3</cites><orcidid>0000-0003-3202-6398</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/s43578-022-00535-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1557/s43578-022-00535-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>McPherson, David J.</creatorcontrib><creatorcontrib>Dowd, Annette</creatorcontrib><creatorcontrib>Arnold, Matthew D.</creatorcontrib><creatorcontrib>Gentle, Angus</creatorcontrib><creatorcontrib>Cortie, Michael B.</creatorcontrib><title>Electrochemical energy storage on nanoporous copper sponge</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><description>A proof-of-principle double-layer symmetrical supercapacitor with nanoporous copper/copper oxide electrodes and an aqueous electrolyte is investigated. The electrodes are manufactured by selective dissolution of Al from a eutectic composition of Cu 17.5 Al 82.5 using 5 M NaOH. The ostensible (i.e., net external) capacitance of a symmetrical two-electrode cell with 0.1 M KNO 3 electrolyte is assessed over a series of charge/discharge cycles and is about 2 F per gram of Cu in this simple prototype. Capacitance varies during a discharge cycle due evidently to the deeply buried surfaces and pseudocapacitive reactions contributing charge toward the end of a discharge cycle. In principle such a device should have very low ohmic losses due to its highly conductive backbone and would be suitable for applications requiring maximum energy efficiency over repeated cycling. The aqueous electrolyte ensures fire safety but this comes at the cost of lower energy content. Graphical abstract</description><subject>Applied and Technical Physics</subject><subject>Aqueous electrolytes</subject><subject>Biomaterials</subject><subject>Capacitance</subject><subject>Chemistry and Materials Science</subject><subject>Copper</subject><subject>Copper oxides</subject><subject>Discharge</subject><subject>Electrodes</subject><subject>Energy storage</subject><subject>Eutectic composition</subject><subject>Fire protection</subject><subject>Fire safety</subject><subject>Inorganic Chemistry</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Principles</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kD1PwzAURS0EEqXwB5giMRue_ezYYUNV-ZAqscBsOY5dWrVxsJOh_fUEgsTG9JZz79U7hFwzuGVSqrssUCpNgXMKIFHS4wmZcRCCSuTlKZmB1oLyiolzcpHzFoBJUGJG7pc77_oU3Yffb5zdFb71aX0och-TXfsitkVr29jFFIdcuNh1PhW5i-3aX5KzYHfZX_3eOXl_XL4tnunq9ell8bCiDkvsacBKoFMWEVDbileVq2tgQdZauQDaYsOAoW44lqxp6pqB1NbyyvImlD7gnNxMvV2Kn4PPvdnGIbXjpOEKNNegmB4pPlEuxZyTD6ZLm71NB8PAfDsykyMzOjI_jsxxDOEUyiM8vpT-qv9JfQEICGp1</recordid><startdate>20220714</startdate><enddate>20220714</enddate><creator>McPherson, David J.</creator><creator>Dowd, Annette</creator><creator>Arnold, Matthew D.</creator><creator>Gentle, Angus</creator><creator>Cortie, Michael B.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-3202-6398</orcidid></search><sort><creationdate>20220714</creationdate><title>Electrochemical energy storage on nanoporous copper sponge</title><author>McPherson, David J. ; Dowd, Annette ; Arnold, Matthew D. ; Gentle, Angus ; Cortie, Michael B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-f3943c7a33038a9299cbb01f5b87cf08a3d10138d2361ddbb1058aa29a2df6ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied and Technical Physics</topic><topic>Aqueous electrolytes</topic><topic>Biomaterials</topic><topic>Capacitance</topic><topic>Chemistry and Materials Science</topic><topic>Copper</topic><topic>Copper oxides</topic><topic>Discharge</topic><topic>Electrodes</topic><topic>Energy storage</topic><topic>Eutectic composition</topic><topic>Fire protection</topic><topic>Fire safety</topic><topic>Inorganic Chemistry</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Principles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McPherson, David J.</creatorcontrib><creatorcontrib>Dowd, Annette</creatorcontrib><creatorcontrib>Arnold, Matthew D.</creatorcontrib><creatorcontrib>Gentle, Angus</creatorcontrib><creatorcontrib>Cortie, Michael B.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McPherson, David J.</au><au>Dowd, Annette</au><au>Arnold, Matthew D.</au><au>Gentle, Angus</au><au>Cortie, Michael B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical energy storage on nanoporous copper sponge</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><date>2022-07-14</date><risdate>2022</risdate><volume>37</volume><issue>13</issue><spage>2195</spage><epage>2203</epage><pages>2195-2203</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>A proof-of-principle double-layer symmetrical supercapacitor with nanoporous copper/copper oxide electrodes and an aqueous electrolyte is investigated. The electrodes are manufactured by selective dissolution of Al from a eutectic composition of Cu 17.5 Al 82.5 using 5 M NaOH. The ostensible (i.e., net external) capacitance of a symmetrical two-electrode cell with 0.1 M KNO 3 electrolyte is assessed over a series of charge/discharge cycles and is about 2 F per gram of Cu in this simple prototype. Capacitance varies during a discharge cycle due evidently to the deeply buried surfaces and pseudocapacitive reactions contributing charge toward the end of a discharge cycle. In principle such a device should have very low ohmic losses due to its highly conductive backbone and would be suitable for applications requiring maximum energy efficiency over repeated cycling. The aqueous electrolyte ensures fire safety but this comes at the cost of lower energy content. Graphical abstract</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1557/s43578-022-00535-z</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3202-6398</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0884-2914
ispartof Journal of materials research, 2022-07, Vol.37 (13), p.2195-2203
issn 0884-2914
2044-5326
language eng
recordid cdi_proquest_journals_2708280718
source SpringerLink Journals
subjects Applied and Technical Physics
Aqueous electrolytes
Biomaterials
Capacitance
Chemistry and Materials Science
Copper
Copper oxides
Discharge
Electrodes
Energy storage
Eutectic composition
Fire protection
Fire safety
Inorganic Chemistry
Materials Engineering
Materials research
Materials Science
Nanotechnology
Principles
title Electrochemical energy storage on nanoporous copper sponge
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T07%3A25%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20energy%20storage%20on%20nanoporous%20copper%20sponge&rft.jtitle=Journal%20of%20materials%20research&rft.au=McPherson,%20David%20J.&rft.date=2022-07-14&rft.volume=37&rft.issue=13&rft.spage=2195&rft.epage=2203&rft.pages=2195-2203&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/s43578-022-00535-z&rft_dat=%3Cproquest_cross%3E2708280718%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2708280718&rft_id=info:pmid/&rfr_iscdi=true