Electrochemical energy storage on nanoporous copper sponge
A proof-of-principle double-layer symmetrical supercapacitor with nanoporous copper/copper oxide electrodes and an aqueous electrolyte is investigated. The electrodes are manufactured by selective dissolution of Al from a eutectic composition of Cu 17.5 Al 82.5 using 5 M NaOH. The ostensible (i.e.,...
Gespeichert in:
Veröffentlicht in: | Journal of materials research 2022-07, Vol.37 (13), p.2195-2203 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2203 |
---|---|
container_issue | 13 |
container_start_page | 2195 |
container_title | Journal of materials research |
container_volume | 37 |
creator | McPherson, David J. Dowd, Annette Arnold, Matthew D. Gentle, Angus Cortie, Michael B. |
description | A proof-of-principle double-layer symmetrical supercapacitor with nanoporous copper/copper oxide electrodes and an aqueous electrolyte is investigated. The electrodes are manufactured by selective dissolution of Al from a eutectic composition of Cu
17.5
Al
82.5
using 5 M NaOH. The ostensible (i.e., net external) capacitance of a symmetrical two-electrode cell with 0.1 M KNO
3
electrolyte is assessed over a series of charge/discharge cycles and is about 2 F per gram of Cu in this simple prototype. Capacitance varies during a discharge cycle due evidently to the deeply buried surfaces and pseudocapacitive reactions contributing charge toward the end of a discharge cycle. In principle such a device should have very low ohmic losses due to its highly conductive backbone and would be suitable for applications requiring maximum energy efficiency over repeated cycling. The aqueous electrolyte ensures fire safety but this comes at the cost of lower energy content.
Graphical abstract |
doi_str_mv | 10.1557/s43578-022-00535-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2708280718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2708280718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-f3943c7a33038a9299cbb01f5b87cf08a3d10138d2361ddbb1058aa29a2df6ef3</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwB5giMRue_ezYYUNV-ZAqscBsOY5dWrVxsJOh_fUEgsTG9JZz79U7hFwzuGVSqrssUCpNgXMKIFHS4wmZcRCCSuTlKZmB1oLyiolzcpHzFoBJUGJG7pc77_oU3Yffb5zdFb71aX0och-TXfsitkVr29jFFIdcuNh1PhW5i-3aX5KzYHfZX_3eOXl_XL4tnunq9ell8bCiDkvsacBKoFMWEVDbileVq2tgQdZauQDaYsOAoW44lqxp6pqB1NbyyvImlD7gnNxMvV2Kn4PPvdnGIbXjpOEKNNegmB4pPlEuxZyTD6ZLm71NB8PAfDsykyMzOjI_jsxxDOEUyiM8vpT-qv9JfQEICGp1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708280718</pqid></control><display><type>article</type><title>Electrochemical energy storage on nanoporous copper sponge</title><source>SpringerLink Journals</source><creator>McPherson, David J. ; Dowd, Annette ; Arnold, Matthew D. ; Gentle, Angus ; Cortie, Michael B.</creator><creatorcontrib>McPherson, David J. ; Dowd, Annette ; Arnold, Matthew D. ; Gentle, Angus ; Cortie, Michael B.</creatorcontrib><description>A proof-of-principle double-layer symmetrical supercapacitor with nanoporous copper/copper oxide electrodes and an aqueous electrolyte is investigated. The electrodes are manufactured by selective dissolution of Al from a eutectic composition of Cu
17.5
Al
82.5
using 5 M NaOH. The ostensible (i.e., net external) capacitance of a symmetrical two-electrode cell with 0.1 M KNO
3
electrolyte is assessed over a series of charge/discharge cycles and is about 2 F per gram of Cu in this simple prototype. Capacitance varies during a discharge cycle due evidently to the deeply buried surfaces and pseudocapacitive reactions contributing charge toward the end of a discharge cycle. In principle such a device should have very low ohmic losses due to its highly conductive backbone and would be suitable for applications requiring maximum energy efficiency over repeated cycling. The aqueous electrolyte ensures fire safety but this comes at the cost of lower energy content.
Graphical abstract</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/s43578-022-00535-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applied and Technical Physics ; Aqueous electrolytes ; Biomaterials ; Capacitance ; Chemistry and Materials Science ; Copper ; Copper oxides ; Discharge ; Electrodes ; Energy storage ; Eutectic composition ; Fire protection ; Fire safety ; Inorganic Chemistry ; Materials Engineering ; Materials research ; Materials Science ; Nanotechnology ; Principles</subject><ispartof>Journal of materials research, 2022-07, Vol.37 (13), p.2195-2203</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-f3943c7a33038a9299cbb01f5b87cf08a3d10138d2361ddbb1058aa29a2df6ef3</citedby><cites>FETCH-LOGICAL-c363t-f3943c7a33038a9299cbb01f5b87cf08a3d10138d2361ddbb1058aa29a2df6ef3</cites><orcidid>0000-0003-3202-6398</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/s43578-022-00535-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1557/s43578-022-00535-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>McPherson, David J.</creatorcontrib><creatorcontrib>Dowd, Annette</creatorcontrib><creatorcontrib>Arnold, Matthew D.</creatorcontrib><creatorcontrib>Gentle, Angus</creatorcontrib><creatorcontrib>Cortie, Michael B.</creatorcontrib><title>Electrochemical energy storage on nanoporous copper sponge</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><description>A proof-of-principle double-layer symmetrical supercapacitor with nanoporous copper/copper oxide electrodes and an aqueous electrolyte is investigated. The electrodes are manufactured by selective dissolution of Al from a eutectic composition of Cu
17.5
Al
82.5
using 5 M NaOH. The ostensible (i.e., net external) capacitance of a symmetrical two-electrode cell with 0.1 M KNO
3
electrolyte is assessed over a series of charge/discharge cycles and is about 2 F per gram of Cu in this simple prototype. Capacitance varies during a discharge cycle due evidently to the deeply buried surfaces and pseudocapacitive reactions contributing charge toward the end of a discharge cycle. In principle such a device should have very low ohmic losses due to its highly conductive backbone and would be suitable for applications requiring maximum energy efficiency over repeated cycling. The aqueous electrolyte ensures fire safety but this comes at the cost of lower energy content.
Graphical abstract</description><subject>Applied and Technical Physics</subject><subject>Aqueous electrolytes</subject><subject>Biomaterials</subject><subject>Capacitance</subject><subject>Chemistry and Materials Science</subject><subject>Copper</subject><subject>Copper oxides</subject><subject>Discharge</subject><subject>Electrodes</subject><subject>Energy storage</subject><subject>Eutectic composition</subject><subject>Fire protection</subject><subject>Fire safety</subject><subject>Inorganic Chemistry</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Principles</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kD1PwzAURS0EEqXwB5giMRue_ezYYUNV-ZAqscBsOY5dWrVxsJOh_fUEgsTG9JZz79U7hFwzuGVSqrssUCpNgXMKIFHS4wmZcRCCSuTlKZmB1oLyiolzcpHzFoBJUGJG7pc77_oU3Yffb5zdFb71aX0och-TXfsitkVr29jFFIdcuNh1PhW5i-3aX5KzYHfZX_3eOXl_XL4tnunq9ell8bCiDkvsacBKoFMWEVDbileVq2tgQdZauQDaYsOAoW44lqxp6pqB1NbyyvImlD7gnNxMvV2Kn4PPvdnGIbXjpOEKNNegmB4pPlEuxZyTD6ZLm71NB8PAfDsykyMzOjI_jsxxDOEUyiM8vpT-qv9JfQEICGp1</recordid><startdate>20220714</startdate><enddate>20220714</enddate><creator>McPherson, David J.</creator><creator>Dowd, Annette</creator><creator>Arnold, Matthew D.</creator><creator>Gentle, Angus</creator><creator>Cortie, Michael B.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-3202-6398</orcidid></search><sort><creationdate>20220714</creationdate><title>Electrochemical energy storage on nanoporous copper sponge</title><author>McPherson, David J. ; Dowd, Annette ; Arnold, Matthew D. ; Gentle, Angus ; Cortie, Michael B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-f3943c7a33038a9299cbb01f5b87cf08a3d10138d2361ddbb1058aa29a2df6ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied and Technical Physics</topic><topic>Aqueous electrolytes</topic><topic>Biomaterials</topic><topic>Capacitance</topic><topic>Chemistry and Materials Science</topic><topic>Copper</topic><topic>Copper oxides</topic><topic>Discharge</topic><topic>Electrodes</topic><topic>Energy storage</topic><topic>Eutectic composition</topic><topic>Fire protection</topic><topic>Fire safety</topic><topic>Inorganic Chemistry</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Principles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McPherson, David J.</creatorcontrib><creatorcontrib>Dowd, Annette</creatorcontrib><creatorcontrib>Arnold, Matthew D.</creatorcontrib><creatorcontrib>Gentle, Angus</creatorcontrib><creatorcontrib>Cortie, Michael B.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McPherson, David J.</au><au>Dowd, Annette</au><au>Arnold, Matthew D.</au><au>Gentle, Angus</au><au>Cortie, Michael B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical energy storage on nanoporous copper sponge</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><date>2022-07-14</date><risdate>2022</risdate><volume>37</volume><issue>13</issue><spage>2195</spage><epage>2203</epage><pages>2195-2203</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>A proof-of-principle double-layer symmetrical supercapacitor with nanoporous copper/copper oxide electrodes and an aqueous electrolyte is investigated. The electrodes are manufactured by selective dissolution of Al from a eutectic composition of Cu
17.5
Al
82.5
using 5 M NaOH. The ostensible (i.e., net external) capacitance of a symmetrical two-electrode cell with 0.1 M KNO
3
electrolyte is assessed over a series of charge/discharge cycles and is about 2 F per gram of Cu in this simple prototype. Capacitance varies during a discharge cycle due evidently to the deeply buried surfaces and pseudocapacitive reactions contributing charge toward the end of a discharge cycle. In principle such a device should have very low ohmic losses due to its highly conductive backbone and would be suitable for applications requiring maximum energy efficiency over repeated cycling. The aqueous electrolyte ensures fire safety but this comes at the cost of lower energy content.
Graphical abstract</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1557/s43578-022-00535-z</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3202-6398</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-2914 |
ispartof | Journal of materials research, 2022-07, Vol.37 (13), p.2195-2203 |
issn | 0884-2914 2044-5326 |
language | eng |
recordid | cdi_proquest_journals_2708280718 |
source | SpringerLink Journals |
subjects | Applied and Technical Physics Aqueous electrolytes Biomaterials Capacitance Chemistry and Materials Science Copper Copper oxides Discharge Electrodes Energy storage Eutectic composition Fire protection Fire safety Inorganic Chemistry Materials Engineering Materials research Materials Science Nanotechnology Principles |
title | Electrochemical energy storage on nanoporous copper sponge |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T07%3A25%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20energy%20storage%20on%20nanoporous%20copper%20sponge&rft.jtitle=Journal%20of%20materials%20research&rft.au=McPherson,%20David%20J.&rft.date=2022-07-14&rft.volume=37&rft.issue=13&rft.spage=2195&rft.epage=2203&rft.pages=2195-2203&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/s43578-022-00535-z&rft_dat=%3Cproquest_cross%3E2708280718%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2708280718&rft_id=info:pmid/&rfr_iscdi=true |