Embedded multimaterial bioprinting platform for biofabrication of biomimetic vascular structures

The advent of bioprinting technology into the tissue engineering field has permitted the attainment of complex-shaped tissue constructs with unprecedented degree of precision and reproducibility, promising for the highly demanded tissue substitutes including vascular grafts. However, most of the bio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials research 2021-10, Vol.36 (19), p.3851-3864
Hauptverfasser: Dikyol, Caner, Altunbek, Mine, Koc, Bahattin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3864
container_issue 19
container_start_page 3851
container_title Journal of materials research
container_volume 36
creator Dikyol, Caner
Altunbek, Mine
Koc, Bahattin
description The advent of bioprinting technology into the tissue engineering field has permitted the attainment of complex-shaped tissue constructs with unprecedented degree of precision and reproducibility, promising for the highly demanded tissue substitutes including vascular grafts. However, most of the bioprinted vascular tissue substitutes still lack multicellular composition and hierarchical complexity of native blood vessels. In this study, a multimaterial bioprinting platform incorporating multiple-channel microfluidic printhead was combined with embedded bioprinting technique for the fabrication of vascular-like constructs. Three different bioink formulations targeting intimal, medial, and adventitial zones of the natural vascular tissues were sequentially extruded from the microfluidic channels of printhead into a hydrogel-nanoclay support bath in a controlled manner to reach the biomimicry of vascular tissues. The results demonstrated the successful deposition of three bioink compositions into distinct zones within hollow structures, which would provide an opportunity for the construction of functional vascular substitutes. Graphic abstract
doi_str_mv 10.1557/s43578-021-00254-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2708280706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2708280706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-189ffd41a4692a604647570a276ecb6aecc33d05f0003deb9ebabde524cd55353</originalsourceid><addsrcrecordid>eNp9kElLBDEQhYMoOI7-AU8NnqOVrdN9lGFcYMCLnmM6y5ChlzFJy_jv7bEFb16qoOq9V9SH0DWBWyKEvEucCVlhoAQDUMHx4QQtKHCOBaPlKVpAVXFMa8LP0UVKOwAiQPIFel93jbPW2aIb2xw6nV0Mui2aMOxj6HPot8W-1dkPsSumclx43cRgdA5DXwz-OOlC53IwxadOZmx1LFKOo8ljdOkSnXndJnf125fo7WH9unrCm5fH59X9BhtG6oxJVXtvOdG8rKkugZdcCgmaytKZptTOGMYsCA8AzLqmdo1urBOUGysEE2yJbubcfRw-Rpey2g1j7KeTikqoaAUSyklFZ5WJQ0rReTV92en4pQioI0k1k1QTSfVDUh0mE5tN6Yhk6-Jf9D-ubx36eaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708280706</pqid></control><display><type>article</type><title>Embedded multimaterial bioprinting platform for biofabrication of biomimetic vascular structures</title><source>SpringerLink Journals - AutoHoldings</source><creator>Dikyol, Caner ; Altunbek, Mine ; Koc, Bahattin</creator><creatorcontrib>Dikyol, Caner ; Altunbek, Mine ; Koc, Bahattin</creatorcontrib><description>The advent of bioprinting technology into the tissue engineering field has permitted the attainment of complex-shaped tissue constructs with unprecedented degree of precision and reproducibility, promising for the highly demanded tissue substitutes including vascular grafts. However, most of the bioprinted vascular tissue substitutes still lack multicellular composition and hierarchical complexity of native blood vessels. In this study, a multimaterial bioprinting platform incorporating multiple-channel microfluidic printhead was combined with embedded bioprinting technique for the fabrication of vascular-like constructs. Three different bioink formulations targeting intimal, medial, and adventitial zones of the natural vascular tissues were sequentially extruded from the microfluidic channels of printhead into a hydrogel-nanoclay support bath in a controlled manner to reach the biomimicry of vascular tissues. The results demonstrated the successful deposition of three bioink compositions into distinct zones within hollow structures, which would provide an opportunity for the construction of functional vascular substitutes. Graphic abstract</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/s43578-021-00254-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applied and Technical Physics ; Bioengineering ; Biomaterials ; Biomimetics ; Blood vessels ; Chemistry and Materials Science ; Complexity ; Composition ; Extrusion ; Hydrogels ; Inorganic Chemistry ; Invited Paper ; Materials Engineering ; Materials research ; Materials Science ; Microfluidics ; Nanotechnology ; Printers (data processing) ; Substitutes ; Three dimensional printing ; Tissue engineering ; Vascular tissue</subject><ispartof>Journal of materials research, 2021-10, Vol.36 (19), p.3851-3864</ispartof><rights>The Author(s), under exclusive licence to The Materials Research Society 2021</rights><rights>The Author(s), under exclusive licence to The Materials Research Society 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-189ffd41a4692a604647570a276ecb6aecc33d05f0003deb9ebabde524cd55353</citedby><cites>FETCH-LOGICAL-c319t-189ffd41a4692a604647570a276ecb6aecc33d05f0003deb9ebabde524cd55353</cites><orcidid>0000-0001-9073-8516 ; 0000-0002-1659-1269 ; 0000-0003-2224-0702</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/s43578-021-00254-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1557/s43578-021-00254-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Dikyol, Caner</creatorcontrib><creatorcontrib>Altunbek, Mine</creatorcontrib><creatorcontrib>Koc, Bahattin</creatorcontrib><title>Embedded multimaterial bioprinting platform for biofabrication of biomimetic vascular structures</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><description>The advent of bioprinting technology into the tissue engineering field has permitted the attainment of complex-shaped tissue constructs with unprecedented degree of precision and reproducibility, promising for the highly demanded tissue substitutes including vascular grafts. However, most of the bioprinted vascular tissue substitutes still lack multicellular composition and hierarchical complexity of native blood vessels. In this study, a multimaterial bioprinting platform incorporating multiple-channel microfluidic printhead was combined with embedded bioprinting technique for the fabrication of vascular-like constructs. Three different bioink formulations targeting intimal, medial, and adventitial zones of the natural vascular tissues were sequentially extruded from the microfluidic channels of printhead into a hydrogel-nanoclay support bath in a controlled manner to reach the biomimicry of vascular tissues. The results demonstrated the successful deposition of three bioink compositions into distinct zones within hollow structures, which would provide an opportunity for the construction of functional vascular substitutes. Graphic abstract</description><subject>Applied and Technical Physics</subject><subject>Bioengineering</subject><subject>Biomaterials</subject><subject>Biomimetics</subject><subject>Blood vessels</subject><subject>Chemistry and Materials Science</subject><subject>Complexity</subject><subject>Composition</subject><subject>Extrusion</subject><subject>Hydrogels</subject><subject>Inorganic Chemistry</subject><subject>Invited Paper</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Microfluidics</subject><subject>Nanotechnology</subject><subject>Printers (data processing)</subject><subject>Substitutes</subject><subject>Three dimensional printing</subject><subject>Tissue engineering</subject><subject>Vascular tissue</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kElLBDEQhYMoOI7-AU8NnqOVrdN9lGFcYMCLnmM6y5ChlzFJy_jv7bEFb16qoOq9V9SH0DWBWyKEvEucCVlhoAQDUMHx4QQtKHCOBaPlKVpAVXFMa8LP0UVKOwAiQPIFel93jbPW2aIb2xw6nV0Mui2aMOxj6HPot8W-1dkPsSumclx43cRgdA5DXwz-OOlC53IwxadOZmx1LFKOo8ljdOkSnXndJnf125fo7WH9unrCm5fH59X9BhtG6oxJVXtvOdG8rKkugZdcCgmaytKZptTOGMYsCA8AzLqmdo1urBOUGysEE2yJbubcfRw-Rpey2g1j7KeTikqoaAUSyklFZ5WJQ0rReTV92en4pQioI0k1k1QTSfVDUh0mE5tN6Yhk6-Jf9D-ubx36eaA</recordid><startdate>20211014</startdate><enddate>20211014</enddate><creator>Dikyol, Caner</creator><creator>Altunbek, Mine</creator><creator>Koc, Bahattin</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-9073-8516</orcidid><orcidid>https://orcid.org/0000-0002-1659-1269</orcidid><orcidid>https://orcid.org/0000-0003-2224-0702</orcidid></search><sort><creationdate>20211014</creationdate><title>Embedded multimaterial bioprinting platform for biofabrication of biomimetic vascular structures</title><author>Dikyol, Caner ; Altunbek, Mine ; Koc, Bahattin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-189ffd41a4692a604647570a276ecb6aecc33d05f0003deb9ebabde524cd55353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied and Technical Physics</topic><topic>Bioengineering</topic><topic>Biomaterials</topic><topic>Biomimetics</topic><topic>Blood vessels</topic><topic>Chemistry and Materials Science</topic><topic>Complexity</topic><topic>Composition</topic><topic>Extrusion</topic><topic>Hydrogels</topic><topic>Inorganic Chemistry</topic><topic>Invited Paper</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Microfluidics</topic><topic>Nanotechnology</topic><topic>Printers (data processing)</topic><topic>Substitutes</topic><topic>Three dimensional printing</topic><topic>Tissue engineering</topic><topic>Vascular tissue</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dikyol, Caner</creatorcontrib><creatorcontrib>Altunbek, Mine</creatorcontrib><creatorcontrib>Koc, Bahattin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dikyol, Caner</au><au>Altunbek, Mine</au><au>Koc, Bahattin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Embedded multimaterial bioprinting platform for biofabrication of biomimetic vascular structures</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><date>2021-10-14</date><risdate>2021</risdate><volume>36</volume><issue>19</issue><spage>3851</spage><epage>3864</epage><pages>3851-3864</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>The advent of bioprinting technology into the tissue engineering field has permitted the attainment of complex-shaped tissue constructs with unprecedented degree of precision and reproducibility, promising for the highly demanded tissue substitutes including vascular grafts. However, most of the bioprinted vascular tissue substitutes still lack multicellular composition and hierarchical complexity of native blood vessels. In this study, a multimaterial bioprinting platform incorporating multiple-channel microfluidic printhead was combined with embedded bioprinting technique for the fabrication of vascular-like constructs. Three different bioink formulations targeting intimal, medial, and adventitial zones of the natural vascular tissues were sequentially extruded from the microfluidic channels of printhead into a hydrogel-nanoclay support bath in a controlled manner to reach the biomimicry of vascular tissues. The results demonstrated the successful deposition of three bioink compositions into distinct zones within hollow structures, which would provide an opportunity for the construction of functional vascular substitutes. Graphic abstract</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1557/s43578-021-00254-x</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9073-8516</orcidid><orcidid>https://orcid.org/0000-0002-1659-1269</orcidid><orcidid>https://orcid.org/0000-0003-2224-0702</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0884-2914
ispartof Journal of materials research, 2021-10, Vol.36 (19), p.3851-3864
issn 0884-2914
2044-5326
language eng
recordid cdi_proquest_journals_2708280706
source SpringerLink Journals - AutoHoldings
subjects Applied and Technical Physics
Bioengineering
Biomaterials
Biomimetics
Blood vessels
Chemistry and Materials Science
Complexity
Composition
Extrusion
Hydrogels
Inorganic Chemistry
Invited Paper
Materials Engineering
Materials research
Materials Science
Microfluidics
Nanotechnology
Printers (data processing)
Substitutes
Three dimensional printing
Tissue engineering
Vascular tissue
title Embedded multimaterial bioprinting platform for biofabrication of biomimetic vascular structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A13%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Embedded%20multimaterial%20bioprinting%20platform%20for%20biofabrication%20of%20biomimetic%20vascular%20structures&rft.jtitle=Journal%20of%20materials%20research&rft.au=Dikyol,%20Caner&rft.date=2021-10-14&rft.volume=36&rft.issue=19&rft.spage=3851&rft.epage=3864&rft.pages=3851-3864&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/s43578-021-00254-x&rft_dat=%3Cproquest_cross%3E2708280706%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2708280706&rft_id=info:pmid/&rfr_iscdi=true