Embedded multimaterial bioprinting platform for biofabrication of biomimetic vascular structures
The advent of bioprinting technology into the tissue engineering field has permitted the attainment of complex-shaped tissue constructs with unprecedented degree of precision and reproducibility, promising for the highly demanded tissue substitutes including vascular grafts. However, most of the bio...
Gespeichert in:
Veröffentlicht in: | Journal of materials research 2021-10, Vol.36 (19), p.3851-3864 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3864 |
---|---|
container_issue | 19 |
container_start_page | 3851 |
container_title | Journal of materials research |
container_volume | 36 |
creator | Dikyol, Caner Altunbek, Mine Koc, Bahattin |
description | The advent of bioprinting technology into the tissue engineering field has permitted the attainment of complex-shaped tissue constructs with unprecedented degree of precision and reproducibility, promising for the highly demanded tissue substitutes including vascular grafts. However, most of the bioprinted vascular tissue substitutes still lack multicellular composition and hierarchical complexity of native blood vessels. In this study, a multimaterial bioprinting platform incorporating multiple-channel microfluidic printhead was combined with embedded bioprinting technique for the fabrication of vascular-like constructs. Three different bioink formulations targeting intimal, medial, and adventitial zones of the natural vascular tissues were sequentially extruded from the microfluidic channels of printhead into a hydrogel-nanoclay support bath in a controlled manner to reach the biomimicry of vascular tissues. The results demonstrated the successful deposition of three bioink compositions into distinct zones within hollow structures, which would provide an opportunity for the construction of functional vascular substitutes.
Graphic abstract |
doi_str_mv | 10.1557/s43578-021-00254-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2708280706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2708280706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-189ffd41a4692a604647570a276ecb6aecc33d05f0003deb9ebabde524cd55353</originalsourceid><addsrcrecordid>eNp9kElLBDEQhYMoOI7-AU8NnqOVrdN9lGFcYMCLnmM6y5ChlzFJy_jv7bEFb16qoOq9V9SH0DWBWyKEvEucCVlhoAQDUMHx4QQtKHCOBaPlKVpAVXFMa8LP0UVKOwAiQPIFel93jbPW2aIb2xw6nV0Mui2aMOxj6HPot8W-1dkPsSumclx43cRgdA5DXwz-OOlC53IwxadOZmx1LFKOo8ljdOkSnXndJnf125fo7WH9unrCm5fH59X9BhtG6oxJVXtvOdG8rKkugZdcCgmaytKZptTOGMYsCA8AzLqmdo1urBOUGysEE2yJbubcfRw-Rpey2g1j7KeTikqoaAUSyklFZ5WJQ0rReTV92en4pQioI0k1k1QTSfVDUh0mE5tN6Yhk6-Jf9D-ubx36eaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708280706</pqid></control><display><type>article</type><title>Embedded multimaterial bioprinting platform for biofabrication of biomimetic vascular structures</title><source>SpringerLink Journals - AutoHoldings</source><creator>Dikyol, Caner ; Altunbek, Mine ; Koc, Bahattin</creator><creatorcontrib>Dikyol, Caner ; Altunbek, Mine ; Koc, Bahattin</creatorcontrib><description>The advent of bioprinting technology into the tissue engineering field has permitted the attainment of complex-shaped tissue constructs with unprecedented degree of precision and reproducibility, promising for the highly demanded tissue substitutes including vascular grafts. However, most of the bioprinted vascular tissue substitutes still lack multicellular composition and hierarchical complexity of native blood vessels. In this study, a multimaterial bioprinting platform incorporating multiple-channel microfluidic printhead was combined with embedded bioprinting technique for the fabrication of vascular-like constructs. Three different bioink formulations targeting intimal, medial, and adventitial zones of the natural vascular tissues were sequentially extruded from the microfluidic channels of printhead into a hydrogel-nanoclay support bath in a controlled manner to reach the biomimicry of vascular tissues. The results demonstrated the successful deposition of three bioink compositions into distinct zones within hollow structures, which would provide an opportunity for the construction of functional vascular substitutes.
Graphic abstract</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/s43578-021-00254-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applied and Technical Physics ; Bioengineering ; Biomaterials ; Biomimetics ; Blood vessels ; Chemistry and Materials Science ; Complexity ; Composition ; Extrusion ; Hydrogels ; Inorganic Chemistry ; Invited Paper ; Materials Engineering ; Materials research ; Materials Science ; Microfluidics ; Nanotechnology ; Printers (data processing) ; Substitutes ; Three dimensional printing ; Tissue engineering ; Vascular tissue</subject><ispartof>Journal of materials research, 2021-10, Vol.36 (19), p.3851-3864</ispartof><rights>The Author(s), under exclusive licence to The Materials Research Society 2021</rights><rights>The Author(s), under exclusive licence to The Materials Research Society 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-189ffd41a4692a604647570a276ecb6aecc33d05f0003deb9ebabde524cd55353</citedby><cites>FETCH-LOGICAL-c319t-189ffd41a4692a604647570a276ecb6aecc33d05f0003deb9ebabde524cd55353</cites><orcidid>0000-0001-9073-8516 ; 0000-0002-1659-1269 ; 0000-0003-2224-0702</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/s43578-021-00254-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1557/s43578-021-00254-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Dikyol, Caner</creatorcontrib><creatorcontrib>Altunbek, Mine</creatorcontrib><creatorcontrib>Koc, Bahattin</creatorcontrib><title>Embedded multimaterial bioprinting platform for biofabrication of biomimetic vascular structures</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><description>The advent of bioprinting technology into the tissue engineering field has permitted the attainment of complex-shaped tissue constructs with unprecedented degree of precision and reproducibility, promising for the highly demanded tissue substitutes including vascular grafts. However, most of the bioprinted vascular tissue substitutes still lack multicellular composition and hierarchical complexity of native blood vessels. In this study, a multimaterial bioprinting platform incorporating multiple-channel microfluidic printhead was combined with embedded bioprinting technique for the fabrication of vascular-like constructs. Three different bioink formulations targeting intimal, medial, and adventitial zones of the natural vascular tissues were sequentially extruded from the microfluidic channels of printhead into a hydrogel-nanoclay support bath in a controlled manner to reach the biomimicry of vascular tissues. The results demonstrated the successful deposition of three bioink compositions into distinct zones within hollow structures, which would provide an opportunity for the construction of functional vascular substitutes.
Graphic abstract</description><subject>Applied and Technical Physics</subject><subject>Bioengineering</subject><subject>Biomaterials</subject><subject>Biomimetics</subject><subject>Blood vessels</subject><subject>Chemistry and Materials Science</subject><subject>Complexity</subject><subject>Composition</subject><subject>Extrusion</subject><subject>Hydrogels</subject><subject>Inorganic Chemistry</subject><subject>Invited Paper</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Microfluidics</subject><subject>Nanotechnology</subject><subject>Printers (data processing)</subject><subject>Substitutes</subject><subject>Three dimensional printing</subject><subject>Tissue engineering</subject><subject>Vascular tissue</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kElLBDEQhYMoOI7-AU8NnqOVrdN9lGFcYMCLnmM6y5ChlzFJy_jv7bEFb16qoOq9V9SH0DWBWyKEvEucCVlhoAQDUMHx4QQtKHCOBaPlKVpAVXFMa8LP0UVKOwAiQPIFel93jbPW2aIb2xw6nV0Mui2aMOxj6HPot8W-1dkPsSumclx43cRgdA5DXwz-OOlC53IwxadOZmx1LFKOo8ljdOkSnXndJnf125fo7WH9unrCm5fH59X9BhtG6oxJVXtvOdG8rKkugZdcCgmaytKZptTOGMYsCA8AzLqmdo1urBOUGysEE2yJbubcfRw-Rpey2g1j7KeTikqoaAUSyklFZ5WJQ0rReTV92en4pQioI0k1k1QTSfVDUh0mE5tN6Yhk6-Jf9D-ubx36eaA</recordid><startdate>20211014</startdate><enddate>20211014</enddate><creator>Dikyol, Caner</creator><creator>Altunbek, Mine</creator><creator>Koc, Bahattin</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-9073-8516</orcidid><orcidid>https://orcid.org/0000-0002-1659-1269</orcidid><orcidid>https://orcid.org/0000-0003-2224-0702</orcidid></search><sort><creationdate>20211014</creationdate><title>Embedded multimaterial bioprinting platform for biofabrication of biomimetic vascular structures</title><author>Dikyol, Caner ; Altunbek, Mine ; Koc, Bahattin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-189ffd41a4692a604647570a276ecb6aecc33d05f0003deb9ebabde524cd55353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied and Technical Physics</topic><topic>Bioengineering</topic><topic>Biomaterials</topic><topic>Biomimetics</topic><topic>Blood vessels</topic><topic>Chemistry and Materials Science</topic><topic>Complexity</topic><topic>Composition</topic><topic>Extrusion</topic><topic>Hydrogels</topic><topic>Inorganic Chemistry</topic><topic>Invited Paper</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Microfluidics</topic><topic>Nanotechnology</topic><topic>Printers (data processing)</topic><topic>Substitutes</topic><topic>Three dimensional printing</topic><topic>Tissue engineering</topic><topic>Vascular tissue</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dikyol, Caner</creatorcontrib><creatorcontrib>Altunbek, Mine</creatorcontrib><creatorcontrib>Koc, Bahattin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dikyol, Caner</au><au>Altunbek, Mine</au><au>Koc, Bahattin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Embedded multimaterial bioprinting platform for biofabrication of biomimetic vascular structures</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><date>2021-10-14</date><risdate>2021</risdate><volume>36</volume><issue>19</issue><spage>3851</spage><epage>3864</epage><pages>3851-3864</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>The advent of bioprinting technology into the tissue engineering field has permitted the attainment of complex-shaped tissue constructs with unprecedented degree of precision and reproducibility, promising for the highly demanded tissue substitutes including vascular grafts. However, most of the bioprinted vascular tissue substitutes still lack multicellular composition and hierarchical complexity of native blood vessels. In this study, a multimaterial bioprinting platform incorporating multiple-channel microfluidic printhead was combined with embedded bioprinting technique for the fabrication of vascular-like constructs. Three different bioink formulations targeting intimal, medial, and adventitial zones of the natural vascular tissues were sequentially extruded from the microfluidic channels of printhead into a hydrogel-nanoclay support bath in a controlled manner to reach the biomimicry of vascular tissues. The results demonstrated the successful deposition of three bioink compositions into distinct zones within hollow structures, which would provide an opportunity for the construction of functional vascular substitutes.
Graphic abstract</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1557/s43578-021-00254-x</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9073-8516</orcidid><orcidid>https://orcid.org/0000-0002-1659-1269</orcidid><orcidid>https://orcid.org/0000-0003-2224-0702</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-2914 |
ispartof | Journal of materials research, 2021-10, Vol.36 (19), p.3851-3864 |
issn | 0884-2914 2044-5326 |
language | eng |
recordid | cdi_proquest_journals_2708280706 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applied and Technical Physics Bioengineering Biomaterials Biomimetics Blood vessels Chemistry and Materials Science Complexity Composition Extrusion Hydrogels Inorganic Chemistry Invited Paper Materials Engineering Materials research Materials Science Microfluidics Nanotechnology Printers (data processing) Substitutes Three dimensional printing Tissue engineering Vascular tissue |
title | Embedded multimaterial bioprinting platform for biofabrication of biomimetic vascular structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A13%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Embedded%20multimaterial%20bioprinting%20platform%20for%20biofabrication%20of%20biomimetic%20vascular%20structures&rft.jtitle=Journal%20of%20materials%20research&rft.au=Dikyol,%20Caner&rft.date=2021-10-14&rft.volume=36&rft.issue=19&rft.spage=3851&rft.epage=3864&rft.pages=3851-3864&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/s43578-021-00254-x&rft_dat=%3Cproquest_cross%3E2708280706%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2708280706&rft_id=info:pmid/&rfr_iscdi=true |