Resistance to fracture in the glassy solid electrolyte Lipon
We report on the mechanical behavior of a solid Li-ion conductor, lithium phosphorous oxynitride (Lipon), for solid-state batteries. In particular, the purpose of this investigation was to quantify the resistance to cracking (fracture toughness) of this material by nanoindentation. We observed surpr...
Gespeichert in:
Veröffentlicht in: | Journal of materials research 2021-03, Vol.36 (4), p.787-796 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 796 |
---|---|
container_issue | 4 |
container_start_page | 787 |
container_title | Journal of materials research |
container_volume | 36 |
creator | Kalnaus, Sergiy Westover, Andrew S. Kornbluth, Mordechai Herbert, Erik Dudney, Nancy J. |
description | We report on the mechanical behavior of a solid Li-ion conductor, lithium phosphorous oxynitride (Lipon), for solid-state batteries. In particular, the purpose of this investigation was to quantify the resistance to cracking (fracture toughness) of this material by nanoindentation. We observed surprising ductility and the ability to recover in Lipon. We were unsuccessful in inducing cracks in Lipon and observed accommodation of stress via pile-up and densification rather than by cracking at various strain rates. Simulations demonstrate that both deformation and densification depend on the alkali content. Densification appears to be recoverable at room temperature. We discuss the findings in comparison with nanoindentation-induced cracking in other inorganic solid electrolyte materials and provide possible explanations for high resistance of Lipon to Li filament propagation.
Graphic abstract |
doi_str_mv | 10.1557/s43578-020-00098-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2708280235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2708280235</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-8161c18e229530a2a1711934747e79de6ea8db84a20b160f82d441eceb77dd273</originalsourceid><addsrcrecordid>eNp9kEtLAzEURoMoWB9_wFXAdfTmNcmAGym-oCCIrkOauVOnjJOapND-e0dHcOfqbs75LhxCLjhcca3NdVZSG8tAAAOA2rLdAZkJUIppKapDMgNrFRM1V8fkJOc1ANdg1IzcvGDucvFDQFoibZMPZZuQdgMt70hXvc95T3Psu4Zij6Gk2O8L0kW3icMZOWp9n_H8956St_u71_kjWzw_PM1vFyxIqwuzvOKBWxSi1hK88NxwXktllEFTN1iht83SKi9gyStorWiU4hhwaUzTCCNPyeW0u0nxc4u5uHXcpmF86YQBKywIqUdKTFRIMeeErduk7sOnvePgviu5qZIbK7mfSm43SnKS8ggPK0x_0_9YX_ZJaf8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708280235</pqid></control><display><type>article</type><title>Resistance to fracture in the glassy solid electrolyte Lipon</title><source>SpringerLink Journals</source><creator>Kalnaus, Sergiy ; Westover, Andrew S. ; Kornbluth, Mordechai ; Herbert, Erik ; Dudney, Nancy J.</creator><creatorcontrib>Kalnaus, Sergiy ; Westover, Andrew S. ; Kornbluth, Mordechai ; Herbert, Erik ; Dudney, Nancy J.</creatorcontrib><description>We report on the mechanical behavior of a solid Li-ion conductor, lithium phosphorous oxynitride (Lipon), for solid-state batteries. In particular, the purpose of this investigation was to quantify the resistance to cracking (fracture toughness) of this material by nanoindentation. We observed surprising ductility and the ability to recover in Lipon. We were unsuccessful in inducing cracks in Lipon and observed accommodation of stress via pile-up and densification rather than by cracking at various strain rates. Simulations demonstrate that both deformation and densification depend on the alkali content. Densification appears to be recoverable at room temperature. We discuss the findings in comparison with nanoindentation-induced cracking in other inorganic solid electrolyte materials and provide possible explanations for high resistance of Lipon to Li filament propagation.
Graphic abstract</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/s43578-020-00098-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applied and Technical Physics ; Biomaterials ; Chemistry and Materials Science ; Conductors ; Cracking (fracturing) ; Densification ; Fracture toughness ; High resistance ; Inorganic Chemistry ; Invited Paper ; Lithium ions ; Materials Engineering ; Materials research ; Materials Science ; Mechanical properties ; Nanoindentation ; Nanotechnology ; Rechargeable batteries ; Room temperature ; Solid electrolytes</subject><ispartof>Journal of materials research, 2021-03, Vol.36 (4), p.787-796</ispartof><rights>The Author(s), under exclusive licence to The Materials Research Society 2021</rights><rights>The Author(s), under exclusive licence to The Materials Research Society 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-8161c18e229530a2a1711934747e79de6ea8db84a20b160f82d441eceb77dd273</citedby><cites>FETCH-LOGICAL-c385t-8161c18e229530a2a1711934747e79de6ea8db84a20b160f82d441eceb77dd273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/s43578-020-00098-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1557/s43578-020-00098-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Kalnaus, Sergiy</creatorcontrib><creatorcontrib>Westover, Andrew S.</creatorcontrib><creatorcontrib>Kornbluth, Mordechai</creatorcontrib><creatorcontrib>Herbert, Erik</creatorcontrib><creatorcontrib>Dudney, Nancy J.</creatorcontrib><title>Resistance to fracture in the glassy solid electrolyte Lipon</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><description>We report on the mechanical behavior of a solid Li-ion conductor, lithium phosphorous oxynitride (Lipon), for solid-state batteries. In particular, the purpose of this investigation was to quantify the resistance to cracking (fracture toughness) of this material by nanoindentation. We observed surprising ductility and the ability to recover in Lipon. We were unsuccessful in inducing cracks in Lipon and observed accommodation of stress via pile-up and densification rather than by cracking at various strain rates. Simulations demonstrate that both deformation and densification depend on the alkali content. Densification appears to be recoverable at room temperature. We discuss the findings in comparison with nanoindentation-induced cracking in other inorganic solid electrolyte materials and provide possible explanations for high resistance of Lipon to Li filament propagation.
Graphic abstract</description><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Conductors</subject><subject>Cracking (fracturing)</subject><subject>Densification</subject><subject>Fracture toughness</subject><subject>High resistance</subject><subject>Inorganic Chemistry</subject><subject>Invited Paper</subject><subject>Lithium ions</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Nanoindentation</subject><subject>Nanotechnology</subject><subject>Rechargeable batteries</subject><subject>Room temperature</subject><subject>Solid electrolytes</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEURoMoWB9_wFXAdfTmNcmAGym-oCCIrkOauVOnjJOapND-e0dHcOfqbs75LhxCLjhcca3NdVZSG8tAAAOA2rLdAZkJUIppKapDMgNrFRM1V8fkJOc1ANdg1IzcvGDucvFDQFoibZMPZZuQdgMt70hXvc95T3Psu4Zij6Gk2O8L0kW3icMZOWp9n_H8956St_u71_kjWzw_PM1vFyxIqwuzvOKBWxSi1hK88NxwXktllEFTN1iht83SKi9gyStorWiU4hhwaUzTCCNPyeW0u0nxc4u5uHXcpmF86YQBKywIqUdKTFRIMeeErduk7sOnvePgviu5qZIbK7mfSm43SnKS8ggPK0x_0_9YX_ZJaf8</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Kalnaus, Sergiy</creator><creator>Westover, Andrew S.</creator><creator>Kornbluth, Mordechai</creator><creator>Herbert, Erik</creator><creator>Dudney, Nancy J.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20210301</creationdate><title>Resistance to fracture in the glassy solid electrolyte Lipon</title><author>Kalnaus, Sergiy ; Westover, Andrew S. ; Kornbluth, Mordechai ; Herbert, Erik ; Dudney, Nancy J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-8161c18e229530a2a1711934747e79de6ea8db84a20b160f82d441eceb77dd273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Conductors</topic><topic>Cracking (fracturing)</topic><topic>Densification</topic><topic>Fracture toughness</topic><topic>High resistance</topic><topic>Inorganic Chemistry</topic><topic>Invited Paper</topic><topic>Lithium ions</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Nanoindentation</topic><topic>Nanotechnology</topic><topic>Rechargeable batteries</topic><topic>Room temperature</topic><topic>Solid electrolytes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalnaus, Sergiy</creatorcontrib><creatorcontrib>Westover, Andrew S.</creatorcontrib><creatorcontrib>Kornbluth, Mordechai</creatorcontrib><creatorcontrib>Herbert, Erik</creatorcontrib><creatorcontrib>Dudney, Nancy J.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kalnaus, Sergiy</au><au>Westover, Andrew S.</au><au>Kornbluth, Mordechai</au><au>Herbert, Erik</au><au>Dudney, Nancy J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resistance to fracture in the glassy solid electrolyte Lipon</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>36</volume><issue>4</issue><spage>787</spage><epage>796</epage><pages>787-796</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>We report on the mechanical behavior of a solid Li-ion conductor, lithium phosphorous oxynitride (Lipon), for solid-state batteries. In particular, the purpose of this investigation was to quantify the resistance to cracking (fracture toughness) of this material by nanoindentation. We observed surprising ductility and the ability to recover in Lipon. We were unsuccessful in inducing cracks in Lipon and observed accommodation of stress via pile-up and densification rather than by cracking at various strain rates. Simulations demonstrate that both deformation and densification depend on the alkali content. Densification appears to be recoverable at room temperature. We discuss the findings in comparison with nanoindentation-induced cracking in other inorganic solid electrolyte materials and provide possible explanations for high resistance of Lipon to Li filament propagation.
Graphic abstract</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1557/s43578-020-00098-x</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-2914 |
ispartof | Journal of materials research, 2021-03, Vol.36 (4), p.787-796 |
issn | 0884-2914 2044-5326 |
language | eng |
recordid | cdi_proquest_journals_2708280235 |
source | SpringerLink Journals |
subjects | Applied and Technical Physics Biomaterials Chemistry and Materials Science Conductors Cracking (fracturing) Densification Fracture toughness High resistance Inorganic Chemistry Invited Paper Lithium ions Materials Engineering Materials research Materials Science Mechanical properties Nanoindentation Nanotechnology Rechargeable batteries Room temperature Solid electrolytes |
title | Resistance to fracture in the glassy solid electrolyte Lipon |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A21%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resistance%20to%20fracture%20in%20the%20glassy%20solid%20electrolyte%20Lipon&rft.jtitle=Journal%20of%20materials%20research&rft.au=Kalnaus,%20Sergiy&rft.date=2021-03-01&rft.volume=36&rft.issue=4&rft.spage=787&rft.epage=796&rft.pages=787-796&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/s43578-020-00098-x&rft_dat=%3Cproquest_cross%3E2708280235%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2708280235&rft_id=info:pmid/&rfr_iscdi=true |