Resistance to fracture in the glassy solid electrolyte Lipon

We report on the mechanical behavior of a solid Li-ion conductor, lithium phosphorous oxynitride (Lipon), for solid-state batteries. In particular, the purpose of this investigation was to quantify the resistance to cracking (fracture toughness) of this material by nanoindentation. We observed surpr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials research 2021-03, Vol.36 (4), p.787-796
Hauptverfasser: Kalnaus, Sergiy, Westover, Andrew S., Kornbluth, Mordechai, Herbert, Erik, Dudney, Nancy J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 796
container_issue 4
container_start_page 787
container_title Journal of materials research
container_volume 36
creator Kalnaus, Sergiy
Westover, Andrew S.
Kornbluth, Mordechai
Herbert, Erik
Dudney, Nancy J.
description We report on the mechanical behavior of a solid Li-ion conductor, lithium phosphorous oxynitride (Lipon), for solid-state batteries. In particular, the purpose of this investigation was to quantify the resistance to cracking (fracture toughness) of this material by nanoindentation. We observed surprising ductility and the ability to recover in Lipon. We were unsuccessful in inducing cracks in Lipon and observed accommodation of stress via pile-up and densification rather than by cracking at various strain rates. Simulations demonstrate that both deformation and densification depend on the alkali content. Densification appears to be recoverable at room temperature. We discuss the findings in comparison with nanoindentation-induced cracking in other inorganic solid electrolyte materials and provide possible explanations for high resistance of Lipon to Li filament propagation. Graphic abstract
doi_str_mv 10.1557/s43578-020-00098-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2708280235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2708280235</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-8161c18e229530a2a1711934747e79de6ea8db84a20b160f82d441eceb77dd273</originalsourceid><addsrcrecordid>eNp9kEtLAzEURoMoWB9_wFXAdfTmNcmAGym-oCCIrkOauVOnjJOapND-e0dHcOfqbs75LhxCLjhcca3NdVZSG8tAAAOA2rLdAZkJUIppKapDMgNrFRM1V8fkJOc1ANdg1IzcvGDucvFDQFoibZMPZZuQdgMt70hXvc95T3Psu4Zij6Gk2O8L0kW3icMZOWp9n_H8956St_u71_kjWzw_PM1vFyxIqwuzvOKBWxSi1hK88NxwXktllEFTN1iht83SKi9gyStorWiU4hhwaUzTCCNPyeW0u0nxc4u5uHXcpmF86YQBKywIqUdKTFRIMeeErduk7sOnvePgviu5qZIbK7mfSm43SnKS8ggPK0x_0_9YX_ZJaf8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708280235</pqid></control><display><type>article</type><title>Resistance to fracture in the glassy solid electrolyte Lipon</title><source>SpringerLink Journals</source><creator>Kalnaus, Sergiy ; Westover, Andrew S. ; Kornbluth, Mordechai ; Herbert, Erik ; Dudney, Nancy J.</creator><creatorcontrib>Kalnaus, Sergiy ; Westover, Andrew S. ; Kornbluth, Mordechai ; Herbert, Erik ; Dudney, Nancy J.</creatorcontrib><description>We report on the mechanical behavior of a solid Li-ion conductor, lithium phosphorous oxynitride (Lipon), for solid-state batteries. In particular, the purpose of this investigation was to quantify the resistance to cracking (fracture toughness) of this material by nanoindentation. We observed surprising ductility and the ability to recover in Lipon. We were unsuccessful in inducing cracks in Lipon and observed accommodation of stress via pile-up and densification rather than by cracking at various strain rates. Simulations demonstrate that both deformation and densification depend on the alkali content. Densification appears to be recoverable at room temperature. We discuss the findings in comparison with nanoindentation-induced cracking in other inorganic solid electrolyte materials and provide possible explanations for high resistance of Lipon to Li filament propagation. Graphic abstract</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/s43578-020-00098-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applied and Technical Physics ; Biomaterials ; Chemistry and Materials Science ; Conductors ; Cracking (fracturing) ; Densification ; Fracture toughness ; High resistance ; Inorganic Chemistry ; Invited Paper ; Lithium ions ; Materials Engineering ; Materials research ; Materials Science ; Mechanical properties ; Nanoindentation ; Nanotechnology ; Rechargeable batteries ; Room temperature ; Solid electrolytes</subject><ispartof>Journal of materials research, 2021-03, Vol.36 (4), p.787-796</ispartof><rights>The Author(s), under exclusive licence to The Materials Research Society 2021</rights><rights>The Author(s), under exclusive licence to The Materials Research Society 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-8161c18e229530a2a1711934747e79de6ea8db84a20b160f82d441eceb77dd273</citedby><cites>FETCH-LOGICAL-c385t-8161c18e229530a2a1711934747e79de6ea8db84a20b160f82d441eceb77dd273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/s43578-020-00098-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1557/s43578-020-00098-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Kalnaus, Sergiy</creatorcontrib><creatorcontrib>Westover, Andrew S.</creatorcontrib><creatorcontrib>Kornbluth, Mordechai</creatorcontrib><creatorcontrib>Herbert, Erik</creatorcontrib><creatorcontrib>Dudney, Nancy J.</creatorcontrib><title>Resistance to fracture in the glassy solid electrolyte Lipon</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><description>We report on the mechanical behavior of a solid Li-ion conductor, lithium phosphorous oxynitride (Lipon), for solid-state batteries. In particular, the purpose of this investigation was to quantify the resistance to cracking (fracture toughness) of this material by nanoindentation. We observed surprising ductility and the ability to recover in Lipon. We were unsuccessful in inducing cracks in Lipon and observed accommodation of stress via pile-up and densification rather than by cracking at various strain rates. Simulations demonstrate that both deformation and densification depend on the alkali content. Densification appears to be recoverable at room temperature. We discuss the findings in comparison with nanoindentation-induced cracking in other inorganic solid electrolyte materials and provide possible explanations for high resistance of Lipon to Li filament propagation. Graphic abstract</description><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Conductors</subject><subject>Cracking (fracturing)</subject><subject>Densification</subject><subject>Fracture toughness</subject><subject>High resistance</subject><subject>Inorganic Chemistry</subject><subject>Invited Paper</subject><subject>Lithium ions</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Nanoindentation</subject><subject>Nanotechnology</subject><subject>Rechargeable batteries</subject><subject>Room temperature</subject><subject>Solid electrolytes</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEURoMoWB9_wFXAdfTmNcmAGym-oCCIrkOauVOnjJOapND-e0dHcOfqbs75LhxCLjhcca3NdVZSG8tAAAOA2rLdAZkJUIppKapDMgNrFRM1V8fkJOc1ANdg1IzcvGDucvFDQFoibZMPZZuQdgMt70hXvc95T3Psu4Zij6Gk2O8L0kW3icMZOWp9n_H8956St_u71_kjWzw_PM1vFyxIqwuzvOKBWxSi1hK88NxwXktllEFTN1iht83SKi9gyStorWiU4hhwaUzTCCNPyeW0u0nxc4u5uHXcpmF86YQBKywIqUdKTFRIMeeErduk7sOnvePgviu5qZIbK7mfSm43SnKS8ggPK0x_0_9YX_ZJaf8</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Kalnaus, Sergiy</creator><creator>Westover, Andrew S.</creator><creator>Kornbluth, Mordechai</creator><creator>Herbert, Erik</creator><creator>Dudney, Nancy J.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20210301</creationdate><title>Resistance to fracture in the glassy solid electrolyte Lipon</title><author>Kalnaus, Sergiy ; Westover, Andrew S. ; Kornbluth, Mordechai ; Herbert, Erik ; Dudney, Nancy J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-8161c18e229530a2a1711934747e79de6ea8db84a20b160f82d441eceb77dd273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Conductors</topic><topic>Cracking (fracturing)</topic><topic>Densification</topic><topic>Fracture toughness</topic><topic>High resistance</topic><topic>Inorganic Chemistry</topic><topic>Invited Paper</topic><topic>Lithium ions</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Nanoindentation</topic><topic>Nanotechnology</topic><topic>Rechargeable batteries</topic><topic>Room temperature</topic><topic>Solid electrolytes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalnaus, Sergiy</creatorcontrib><creatorcontrib>Westover, Andrew S.</creatorcontrib><creatorcontrib>Kornbluth, Mordechai</creatorcontrib><creatorcontrib>Herbert, Erik</creatorcontrib><creatorcontrib>Dudney, Nancy J.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kalnaus, Sergiy</au><au>Westover, Andrew S.</au><au>Kornbluth, Mordechai</au><au>Herbert, Erik</au><au>Dudney, Nancy J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resistance to fracture in the glassy solid electrolyte Lipon</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>36</volume><issue>4</issue><spage>787</spage><epage>796</epage><pages>787-796</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>We report on the mechanical behavior of a solid Li-ion conductor, lithium phosphorous oxynitride (Lipon), for solid-state batteries. In particular, the purpose of this investigation was to quantify the resistance to cracking (fracture toughness) of this material by nanoindentation. We observed surprising ductility and the ability to recover in Lipon. We were unsuccessful in inducing cracks in Lipon and observed accommodation of stress via pile-up and densification rather than by cracking at various strain rates. Simulations demonstrate that both deformation and densification depend on the alkali content. Densification appears to be recoverable at room temperature. We discuss the findings in comparison with nanoindentation-induced cracking in other inorganic solid electrolyte materials and provide possible explanations for high resistance of Lipon to Li filament propagation. Graphic abstract</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1557/s43578-020-00098-x</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0884-2914
ispartof Journal of materials research, 2021-03, Vol.36 (4), p.787-796
issn 0884-2914
2044-5326
language eng
recordid cdi_proquest_journals_2708280235
source SpringerLink Journals
subjects Applied and Technical Physics
Biomaterials
Chemistry and Materials Science
Conductors
Cracking (fracturing)
Densification
Fracture toughness
High resistance
Inorganic Chemistry
Invited Paper
Lithium ions
Materials Engineering
Materials research
Materials Science
Mechanical properties
Nanoindentation
Nanotechnology
Rechargeable batteries
Room temperature
Solid electrolytes
title Resistance to fracture in the glassy solid electrolyte Lipon
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A21%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resistance%20to%20fracture%20in%20the%20glassy%20solid%20electrolyte%20Lipon&rft.jtitle=Journal%20of%20materials%20research&rft.au=Kalnaus,%20Sergiy&rft.date=2021-03-01&rft.volume=36&rft.issue=4&rft.spage=787&rft.epage=796&rft.pages=787-796&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/s43578-020-00098-x&rft_dat=%3Cproquest_cross%3E2708280235%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2708280235&rft_id=info:pmid/&rfr_iscdi=true