Accelerated design of multicomponent metallic glasses using machine learning

The present study examines the role of important elemental, thermodynamic, structural and kinetic attributes in amorphous phase formation and proposes a near fool-proof design strategy for multicomponent metallic glasses (MMGs) using machine learning (ML) approach. The feature space was optimized us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials research 2022-08, Vol.37 (15), p.2428-2445
Hauptverfasser: Bajpai, Anurag, Bhatt, Jatin, Gurao, N. P., Biswas, Krishanu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2445
container_issue 15
container_start_page 2428
container_title Journal of materials research
container_volume 37
creator Bajpai, Anurag
Bhatt, Jatin
Gurao, N. P.
Biswas, Krishanu
description The present study examines the role of important elemental, thermodynamic, structural and kinetic attributes in amorphous phase formation and proposes a near fool-proof design strategy for multicomponent metallic glasses (MMGs) using machine learning (ML) approach. The feature space was optimized using feature engineering and incorporating the scientific fundamentals of glass formation as the ‘ veto ’ method. The incorporation of the characteristic transformation temperatures to the feature space allowed viewing the glass formation phenomenon from previously unexplored dimensions. A multilayer perceptron neural network (MLPNN) with error backpropagation was used to classify MMGs and crystalline multicomponent alloys (CMAs). The trained model performed reasonably well based on various scoring metrics with a cross-validation accuracy of 90.35%. Further, several new MMGs were designed, synthesized and examined for their glass-forming ability (GFA). The analysis showed good agreement between the experimental results and model predictions, validating the efficacy of machine learning approach in steering the development of MMGs in future. Graphical abstract
doi_str_mv 10.1557/s43578-022-00659-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2708231657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2708231657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-105fbf309bc35b8dca014c0fd55493653f4b258791797ebdbc9913c2081ef22d3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcB19GbV9Msh8EXFNzoOqRpUju06Zi0C_-91QruXF04nO9c-BC6pnBLpVR3WXCpSgKMEYBCasJO0IaBEERyVpyiDZSlIExTcY4ucj4AUAlKbFC1c873PtnJN7jxuWsjHgMe5n7q3Dgcx-jjhAc_2b7vHG57m7PPeM5dbPFg3XsXPe69TXEJLtFZsH32V793i94e7l_3T6R6eXze7yrimNAToSBDHTjo2nFZl42zQIWD0EgpNC8kD6JmslSaKq183dROa8odg5L6wFjDt-hm3T2m8WP2eTKHcU5xeWmYgpJxWki1tNjacmnMOflgjqkbbPo0FMy3NbNaM4s182PNsAXiK5SXcmx9-pv-h_oCpCVwDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708231657</pqid></control><display><type>article</type><title>Accelerated design of multicomponent metallic glasses using machine learning</title><source>SpringerNature Journals</source><creator>Bajpai, Anurag ; Bhatt, Jatin ; Gurao, N. P. ; Biswas, Krishanu</creator><creatorcontrib>Bajpai, Anurag ; Bhatt, Jatin ; Gurao, N. P. ; Biswas, Krishanu</creatorcontrib><description>The present study examines the role of important elemental, thermodynamic, structural and kinetic attributes in amorphous phase formation and proposes a near fool-proof design strategy for multicomponent metallic glasses (MMGs) using machine learning (ML) approach. The feature space was optimized using feature engineering and incorporating the scientific fundamentals of glass formation as the ‘ veto ’ method. The incorporation of the characteristic transformation temperatures to the feature space allowed viewing the glass formation phenomenon from previously unexplored dimensions. A multilayer perceptron neural network (MLPNN) with error backpropagation was used to classify MMGs and crystalline multicomponent alloys (CMAs). The trained model performed reasonably well based on various scoring metrics with a cross-validation accuracy of 90.35%. Further, several new MMGs were designed, synthesized and examined for their glass-forming ability (GFA). The analysis showed good agreement between the experimental results and model predictions, validating the efficacy of machine learning approach in steering the development of MMGs in future. Graphical abstract</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/s43578-022-00659-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Amorphous materials ; Applied and Technical Physics ; Back propagation ; Back propagation networks ; Biomaterials ; Chemistry and Materials Science ; Glass ; Glass formation ; Inorganic Chemistry ; Machine learning ; Materials Engineering ; Materials research ; Materials Science ; Metallic glasses ; Multilayer perceptrons ; Nanotechnology ; Neural networks ; Steering ; Transformation temperature</subject><ispartof>Journal of materials research, 2022-08, Vol.37 (15), p.2428-2445</ispartof><rights>The Author(s), under exclusive licence to The Materials Research Society 2022</rights><rights>The Author(s), under exclusive licence to The Materials Research Society 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-105fbf309bc35b8dca014c0fd55493653f4b258791797ebdbc9913c2081ef22d3</citedby><cites>FETCH-LOGICAL-c249t-105fbf309bc35b8dca014c0fd55493653f4b258791797ebdbc9913c2081ef22d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/s43578-022-00659-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1557/s43578-022-00659-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27933,27934,41497,42566,51328</link.rule.ids></links><search><creatorcontrib>Bajpai, Anurag</creatorcontrib><creatorcontrib>Bhatt, Jatin</creatorcontrib><creatorcontrib>Gurao, N. P.</creatorcontrib><creatorcontrib>Biswas, Krishanu</creatorcontrib><title>Accelerated design of multicomponent metallic glasses using machine learning</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><description>The present study examines the role of important elemental, thermodynamic, structural and kinetic attributes in amorphous phase formation and proposes a near fool-proof design strategy for multicomponent metallic glasses (MMGs) using machine learning (ML) approach. The feature space was optimized using feature engineering and incorporating the scientific fundamentals of glass formation as the ‘ veto ’ method. The incorporation of the characteristic transformation temperatures to the feature space allowed viewing the glass formation phenomenon from previously unexplored dimensions. A multilayer perceptron neural network (MLPNN) with error backpropagation was used to classify MMGs and crystalline multicomponent alloys (CMAs). The trained model performed reasonably well based on various scoring metrics with a cross-validation accuracy of 90.35%. Further, several new MMGs were designed, synthesized and examined for their glass-forming ability (GFA). The analysis showed good agreement between the experimental results and model predictions, validating the efficacy of machine learning approach in steering the development of MMGs in future. Graphical abstract</description><subject>Amorphous materials</subject><subject>Applied and Technical Physics</subject><subject>Back propagation</subject><subject>Back propagation networks</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Glass</subject><subject>Glass formation</subject><subject>Inorganic Chemistry</subject><subject>Machine learning</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Metallic glasses</subject><subject>Multilayer perceptrons</subject><subject>Nanotechnology</subject><subject>Neural networks</subject><subject>Steering</subject><subject>Transformation temperature</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AVcB19GbV9Msh8EXFNzoOqRpUju06Zi0C_-91QruXF04nO9c-BC6pnBLpVR3WXCpSgKMEYBCasJO0IaBEERyVpyiDZSlIExTcY4ucj4AUAlKbFC1c873PtnJN7jxuWsjHgMe5n7q3Dgcx-jjhAc_2b7vHG57m7PPeM5dbPFg3XsXPe69TXEJLtFZsH32V793i94e7l_3T6R6eXze7yrimNAToSBDHTjo2nFZl42zQIWD0EgpNC8kD6JmslSaKq183dROa8odg5L6wFjDt-hm3T2m8WP2eTKHcU5xeWmYgpJxWki1tNjacmnMOflgjqkbbPo0FMy3NbNaM4s182PNsAXiK5SXcmx9-pv-h_oCpCVwDw</recordid><startdate>20220814</startdate><enddate>20220814</enddate><creator>Bajpai, Anurag</creator><creator>Bhatt, Jatin</creator><creator>Gurao, N. P.</creator><creator>Biswas, Krishanu</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20220814</creationdate><title>Accelerated design of multicomponent metallic glasses using machine learning</title><author>Bajpai, Anurag ; Bhatt, Jatin ; Gurao, N. P. ; Biswas, Krishanu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-105fbf309bc35b8dca014c0fd55493653f4b258791797ebdbc9913c2081ef22d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amorphous materials</topic><topic>Applied and Technical Physics</topic><topic>Back propagation</topic><topic>Back propagation networks</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Glass</topic><topic>Glass formation</topic><topic>Inorganic Chemistry</topic><topic>Machine learning</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Metallic glasses</topic><topic>Multilayer perceptrons</topic><topic>Nanotechnology</topic><topic>Neural networks</topic><topic>Steering</topic><topic>Transformation temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bajpai, Anurag</creatorcontrib><creatorcontrib>Bhatt, Jatin</creatorcontrib><creatorcontrib>Gurao, N. P.</creatorcontrib><creatorcontrib>Biswas, Krishanu</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bajpai, Anurag</au><au>Bhatt, Jatin</au><au>Gurao, N. P.</au><au>Biswas, Krishanu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerated design of multicomponent metallic glasses using machine learning</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><date>2022-08-14</date><risdate>2022</risdate><volume>37</volume><issue>15</issue><spage>2428</spage><epage>2445</epage><pages>2428-2445</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>The present study examines the role of important elemental, thermodynamic, structural and kinetic attributes in amorphous phase formation and proposes a near fool-proof design strategy for multicomponent metallic glasses (MMGs) using machine learning (ML) approach. The feature space was optimized using feature engineering and incorporating the scientific fundamentals of glass formation as the ‘ veto ’ method. The incorporation of the characteristic transformation temperatures to the feature space allowed viewing the glass formation phenomenon from previously unexplored dimensions. A multilayer perceptron neural network (MLPNN) with error backpropagation was used to classify MMGs and crystalline multicomponent alloys (CMAs). The trained model performed reasonably well based on various scoring metrics with a cross-validation accuracy of 90.35%. Further, several new MMGs were designed, synthesized and examined for their glass-forming ability (GFA). The analysis showed good agreement between the experimental results and model predictions, validating the efficacy of machine learning approach in steering the development of MMGs in future. Graphical abstract</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1557/s43578-022-00659-2</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0884-2914
ispartof Journal of materials research, 2022-08, Vol.37 (15), p.2428-2445
issn 0884-2914
2044-5326
language eng
recordid cdi_proquest_journals_2708231657
source SpringerNature Journals
subjects Amorphous materials
Applied and Technical Physics
Back propagation
Back propagation networks
Biomaterials
Chemistry and Materials Science
Glass
Glass formation
Inorganic Chemistry
Machine learning
Materials Engineering
Materials research
Materials Science
Metallic glasses
Multilayer perceptrons
Nanotechnology
Neural networks
Steering
Transformation temperature
title Accelerated design of multicomponent metallic glasses using machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T09%3A28%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerated%20design%20of%20multicomponent%20metallic%20glasses%20using%20machine%20learning&rft.jtitle=Journal%20of%20materials%20research&rft.au=Bajpai,%20Anurag&rft.date=2022-08-14&rft.volume=37&rft.issue=15&rft.spage=2428&rft.epage=2445&rft.pages=2428-2445&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/s43578-022-00659-2&rft_dat=%3Cproquest_cross%3E2708231657%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2708231657&rft_id=info:pmid/&rfr_iscdi=true