Accelerated design of multicomponent metallic glasses using machine learning
The present study examines the role of important elemental, thermodynamic, structural and kinetic attributes in amorphous phase formation and proposes a near fool-proof design strategy for multicomponent metallic glasses (MMGs) using machine learning (ML) approach. The feature space was optimized us...
Gespeichert in:
Veröffentlicht in: | Journal of materials research 2022-08, Vol.37 (15), p.2428-2445 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2445 |
---|---|
container_issue | 15 |
container_start_page | 2428 |
container_title | Journal of materials research |
container_volume | 37 |
creator | Bajpai, Anurag Bhatt, Jatin Gurao, N. P. Biswas, Krishanu |
description | The present study examines the role of important elemental, thermodynamic, structural and kinetic attributes in amorphous phase formation and proposes a near fool-proof design strategy for multicomponent metallic glasses (MMGs) using machine learning (ML) approach. The feature space was optimized using feature engineering and incorporating the scientific fundamentals of glass formation as the ‘
veto
’ method. The incorporation of the characteristic transformation temperatures to the feature space allowed viewing the glass formation phenomenon from previously unexplored dimensions. A multilayer perceptron neural network (MLPNN) with error backpropagation was used to classify MMGs and crystalline multicomponent alloys (CMAs). The trained model performed reasonably well based on various scoring metrics with a cross-validation accuracy of 90.35%. Further, several new MMGs were designed, synthesized and examined for their glass-forming ability (GFA). The analysis showed good agreement between the experimental results and model predictions, validating the efficacy of machine learning approach in steering the development of MMGs in future.
Graphical abstract |
doi_str_mv | 10.1557/s43578-022-00659-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2708231657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2708231657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-105fbf309bc35b8dca014c0fd55493653f4b258791797ebdbc9913c2081ef22d3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcB19GbV9Msh8EXFNzoOqRpUju06Zi0C_-91QruXF04nO9c-BC6pnBLpVR3WXCpSgKMEYBCasJO0IaBEERyVpyiDZSlIExTcY4ucj4AUAlKbFC1c873PtnJN7jxuWsjHgMe5n7q3Dgcx-jjhAc_2b7vHG57m7PPeM5dbPFg3XsXPe69TXEJLtFZsH32V793i94e7l_3T6R6eXze7yrimNAToSBDHTjo2nFZl42zQIWD0EgpNC8kD6JmslSaKq183dROa8odg5L6wFjDt-hm3T2m8WP2eTKHcU5xeWmYgpJxWki1tNjacmnMOflgjqkbbPo0FMy3NbNaM4s182PNsAXiK5SXcmx9-pv-h_oCpCVwDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708231657</pqid></control><display><type>article</type><title>Accelerated design of multicomponent metallic glasses using machine learning</title><source>SpringerNature Journals</source><creator>Bajpai, Anurag ; Bhatt, Jatin ; Gurao, N. P. ; Biswas, Krishanu</creator><creatorcontrib>Bajpai, Anurag ; Bhatt, Jatin ; Gurao, N. P. ; Biswas, Krishanu</creatorcontrib><description>The present study examines the role of important elemental, thermodynamic, structural and kinetic attributes in amorphous phase formation and proposes a near fool-proof design strategy for multicomponent metallic glasses (MMGs) using machine learning (ML) approach. The feature space was optimized using feature engineering and incorporating the scientific fundamentals of glass formation as the ‘
veto
’ method. The incorporation of the characteristic transformation temperatures to the feature space allowed viewing the glass formation phenomenon from previously unexplored dimensions. A multilayer perceptron neural network (MLPNN) with error backpropagation was used to classify MMGs and crystalline multicomponent alloys (CMAs). The trained model performed reasonably well based on various scoring metrics with a cross-validation accuracy of 90.35%. Further, several new MMGs were designed, synthesized and examined for their glass-forming ability (GFA). The analysis showed good agreement between the experimental results and model predictions, validating the efficacy of machine learning approach in steering the development of MMGs in future.
Graphical abstract</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/s43578-022-00659-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Amorphous materials ; Applied and Technical Physics ; Back propagation ; Back propagation networks ; Biomaterials ; Chemistry and Materials Science ; Glass ; Glass formation ; Inorganic Chemistry ; Machine learning ; Materials Engineering ; Materials research ; Materials Science ; Metallic glasses ; Multilayer perceptrons ; Nanotechnology ; Neural networks ; Steering ; Transformation temperature</subject><ispartof>Journal of materials research, 2022-08, Vol.37 (15), p.2428-2445</ispartof><rights>The Author(s), under exclusive licence to The Materials Research Society 2022</rights><rights>The Author(s), under exclusive licence to The Materials Research Society 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-105fbf309bc35b8dca014c0fd55493653f4b258791797ebdbc9913c2081ef22d3</citedby><cites>FETCH-LOGICAL-c249t-105fbf309bc35b8dca014c0fd55493653f4b258791797ebdbc9913c2081ef22d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/s43578-022-00659-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1557/s43578-022-00659-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27933,27934,41497,42566,51328</link.rule.ids></links><search><creatorcontrib>Bajpai, Anurag</creatorcontrib><creatorcontrib>Bhatt, Jatin</creatorcontrib><creatorcontrib>Gurao, N. P.</creatorcontrib><creatorcontrib>Biswas, Krishanu</creatorcontrib><title>Accelerated design of multicomponent metallic glasses using machine learning</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><description>The present study examines the role of important elemental, thermodynamic, structural and kinetic attributes in amorphous phase formation and proposes a near fool-proof design strategy for multicomponent metallic glasses (MMGs) using machine learning (ML) approach. The feature space was optimized using feature engineering and incorporating the scientific fundamentals of glass formation as the ‘
veto
’ method. The incorporation of the characteristic transformation temperatures to the feature space allowed viewing the glass formation phenomenon from previously unexplored dimensions. A multilayer perceptron neural network (MLPNN) with error backpropagation was used to classify MMGs and crystalline multicomponent alloys (CMAs). The trained model performed reasonably well based on various scoring metrics with a cross-validation accuracy of 90.35%. Further, several new MMGs were designed, synthesized and examined for their glass-forming ability (GFA). The analysis showed good agreement between the experimental results and model predictions, validating the efficacy of machine learning approach in steering the development of MMGs in future.
Graphical abstract</description><subject>Amorphous materials</subject><subject>Applied and Technical Physics</subject><subject>Back propagation</subject><subject>Back propagation networks</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Glass</subject><subject>Glass formation</subject><subject>Inorganic Chemistry</subject><subject>Machine learning</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Metallic glasses</subject><subject>Multilayer perceptrons</subject><subject>Nanotechnology</subject><subject>Neural networks</subject><subject>Steering</subject><subject>Transformation temperature</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AVcB19GbV9Msh8EXFNzoOqRpUju06Zi0C_-91QruXF04nO9c-BC6pnBLpVR3WXCpSgKMEYBCasJO0IaBEERyVpyiDZSlIExTcY4ucj4AUAlKbFC1c873PtnJN7jxuWsjHgMe5n7q3Dgcx-jjhAc_2b7vHG57m7PPeM5dbPFg3XsXPe69TXEJLtFZsH32V793i94e7l_3T6R6eXze7yrimNAToSBDHTjo2nFZl42zQIWD0EgpNC8kD6JmslSaKq183dROa8odg5L6wFjDt-hm3T2m8WP2eTKHcU5xeWmYgpJxWki1tNjacmnMOflgjqkbbPo0FMy3NbNaM4s182PNsAXiK5SXcmx9-pv-h_oCpCVwDw</recordid><startdate>20220814</startdate><enddate>20220814</enddate><creator>Bajpai, Anurag</creator><creator>Bhatt, Jatin</creator><creator>Gurao, N. P.</creator><creator>Biswas, Krishanu</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20220814</creationdate><title>Accelerated design of multicomponent metallic glasses using machine learning</title><author>Bajpai, Anurag ; Bhatt, Jatin ; Gurao, N. P. ; Biswas, Krishanu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-105fbf309bc35b8dca014c0fd55493653f4b258791797ebdbc9913c2081ef22d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amorphous materials</topic><topic>Applied and Technical Physics</topic><topic>Back propagation</topic><topic>Back propagation networks</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Glass</topic><topic>Glass formation</topic><topic>Inorganic Chemistry</topic><topic>Machine learning</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Metallic glasses</topic><topic>Multilayer perceptrons</topic><topic>Nanotechnology</topic><topic>Neural networks</topic><topic>Steering</topic><topic>Transformation temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bajpai, Anurag</creatorcontrib><creatorcontrib>Bhatt, Jatin</creatorcontrib><creatorcontrib>Gurao, N. P.</creatorcontrib><creatorcontrib>Biswas, Krishanu</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bajpai, Anurag</au><au>Bhatt, Jatin</au><au>Gurao, N. P.</au><au>Biswas, Krishanu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerated design of multicomponent metallic glasses using machine learning</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><date>2022-08-14</date><risdate>2022</risdate><volume>37</volume><issue>15</issue><spage>2428</spage><epage>2445</epage><pages>2428-2445</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>The present study examines the role of important elemental, thermodynamic, structural and kinetic attributes in amorphous phase formation and proposes a near fool-proof design strategy for multicomponent metallic glasses (MMGs) using machine learning (ML) approach. The feature space was optimized using feature engineering and incorporating the scientific fundamentals of glass formation as the ‘
veto
’ method. The incorporation of the characteristic transformation temperatures to the feature space allowed viewing the glass formation phenomenon from previously unexplored dimensions. A multilayer perceptron neural network (MLPNN) with error backpropagation was used to classify MMGs and crystalline multicomponent alloys (CMAs). The trained model performed reasonably well based on various scoring metrics with a cross-validation accuracy of 90.35%. Further, several new MMGs were designed, synthesized and examined for their glass-forming ability (GFA). The analysis showed good agreement between the experimental results and model predictions, validating the efficacy of machine learning approach in steering the development of MMGs in future.
Graphical abstract</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1557/s43578-022-00659-2</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-2914 |
ispartof | Journal of materials research, 2022-08, Vol.37 (15), p.2428-2445 |
issn | 0884-2914 2044-5326 |
language | eng |
recordid | cdi_proquest_journals_2708231657 |
source | SpringerNature Journals |
subjects | Amorphous materials Applied and Technical Physics Back propagation Back propagation networks Biomaterials Chemistry and Materials Science Glass Glass formation Inorganic Chemistry Machine learning Materials Engineering Materials research Materials Science Metallic glasses Multilayer perceptrons Nanotechnology Neural networks Steering Transformation temperature |
title | Accelerated design of multicomponent metallic glasses using machine learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T09%3A28%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerated%20design%20of%20multicomponent%20metallic%20glasses%20using%20machine%20learning&rft.jtitle=Journal%20of%20materials%20research&rft.au=Bajpai,%20Anurag&rft.date=2022-08-14&rft.volume=37&rft.issue=15&rft.spage=2428&rft.epage=2445&rft.pages=2428-2445&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/s43578-022-00659-2&rft_dat=%3Cproquest_cross%3E2708231657%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2708231657&rft_id=info:pmid/&rfr_iscdi=true |